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A B S T R A C T   

Species richness within a site (i.e., alpha diversity) and between sites (i.e., beta diversity) are 
important measurements of biodiversity utilized in wildlife research and management. However, 
novel occupancy modeling approaches, especially at large spatial scales and in conjunction with 
other analyses of biodiversity, remain scarce in studies of mammalian biodiversity across forested 
landscapes. We assessed alpha and beta diversity of mammals across a 16,058-km2 region of 
southern Illinois, USA, between January and April of the years 2008–2010. We deployed camera 
traps, measured habitat variables, applied hierarchical occupancy modeling and meta-analysis 
techniques to investigate alpha diversity, and used partial redundancy analyses and partial 
Mantel tests to investigate beta diversity. We collected 86,486 photographic captures of mam
mals. Alpha diversity values ranged from 3 to 10; models incorporating Simpson’s diversity index 
of patch types, distance to major road, and agriculture clumpiness index were most supported. 
Forest proximity and percentage forest cover explained minor variation in beta diversity, and we 
found weak, positive correlations between beta diversity and percentage forest cover and forest 
proximity index. Mammalian biodiversity was strongly influenced by generalist species and 
highest with (1) moderate levels of habitat heterogeneity, (2) low to moderate levels of anthro
pogenic influence, and (3) nearby forest cover. Anthropogenic influences and the presence of 
agriculture appeared to increase species richness by providing novel food resources and addi
tional habitat that generalist species could exploit while also being tolerant of any accompanying 
landscape fragmentation or disturbance. While dominated by generalist species, our local 
mammalian community had an affinity for forest cover, reinforcing the importance of forested 
habitat to these species in hardwood forest systems. Our study demonstrates the usefulness of 
hierarchical modeling approaches and the importance of examining biodiversity through varying 
measurements.   

1. Introduction 

Species richness is a fundamental measurement of biodiversity used in ecological models and conservation plans (Gotelli and 
Colwell, 2001; Guillera-Arroita et al., 2019), allowing for quantitative analysis of biodiversity both within (i.e., alpha diversity) and 
between (i.e., beta diversity) communities. Environmental characteristics of an area is one of the most influential factors affecting such 
patterns at all scales (Pulliam, 1988; Carey and Johnson, 1995; Urquiza-Haas et al., 2009). By providing numerical values (Wilson 
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et al., 2012), species richness allows researchers to infer how biotic and abiotic variables influence alpha and beta diversity through 
comparison of differing sites and regions. 

Understanding the underlying processes affecting alpha and beta diversity at various scales has been a priority of scientists 
(Hawkins, 2001; Torres-Romero and Olalla-Tárraga, 2015) and studied across multiple biogeographical realms (Andrews and O’Brien, 
2000; Badgley and Fox, 2000; Hawkins and Porter, 2003; Whittaker et al., 2007). Such studies hypothesized habitat and anthropogenic 
influences as plausible explanations for observed diversity patterns (Riem et al., 2012; Meyer et al., 2015; Li et al., 2018; Boron et al., 
2019). Given habitat has a strong impact on occupancy of individual mammalian species (Scharine et al., 2011; Anile et al., 2020; 
Cassel et al., 2020), it is also likely to be important to all mammalian species present in an area (Kerr and Packer, 1997; McKinney, 
2008; Kalies et al., 2012). However, studies examining anthropogenic influences on mammalian occupancy or biodiversity reported 
contrasting results (Torres-Romero and Olalla-Tárraga, 2015). Many studies report negative relationships between biodiversity (e.g., 
species richness, phylogenetic diversity) and anthropogenic influences causing habitat loss, fragmentation, or disturbance (McKinney, 
2008; Murphy and Romanuk, 2013; Newbold et al., 2015; Buffa et al., 2018; Chaudhary and Mooers, 2018). However, other studies 
observed a positive relationship between biodiversity and anthropogenic influences, particularly when occurring at low to moderate 
levels (Racey and Euler, 1982; McKinney, 2002; Nielsen et al., 2019; Viljur et al., 2022), highlighting the complex relationship between 
anthropogenic influences and biodiversity. 

Given the potential effect of habitat and anthropogenic influences on biodiversity patterns, numerous modeling approaches have 
been created to assess possible relationships (Balvanera et al., 2002; Legendre et al., 2005; MacKenzie et al., 2006; Carvahlo et al., 
2013; Kéry and Royle, 2015). Measurements such as Sørensen or Jaccard indices of similarity or dissimilarity allow for quantification 
of biodiversity between locations or communities (Chao et al., 2012; Baselga and Leprieur, 2015). When these indices are used in 
canonical correspondence analyses (Balvanera et al., 2002), redundancy analyses (Qiao et al., 2015), or with Mantel tests (Legendre 
et al., 2005), they enable researchers to examine relationships in natural systems to explain biodiversity patterns. Furthermore, 
multiple occupancy modeling (MacKenzie et al., 2006) approaches have arisen as effective methods to investigate questions about 
ecological systems. A traditional occupancy modeling approach describes the raw detection and non-detection data of individual 
species as a function of predictors and estimates species richness via stacking the resulting models (Dorazio and Royle, 2005; 
MacKenzie et al., 2006; Calabrese et al., 2014), creating a “predict-first-stack-later” strategy. Recently, approaches that relate spatially 
replicated species counts directly to environmental predictors at survey sites (Ferrier and Guisan, 2006) and attempt to “stack-
first-predict-later” have emerged (Guillera-Arroita et al., 2019). By simultaneously analyzing multiple species detection data, 
assessment of occupancy models becomes more efficient and capable of providing insight into how communities respond to envi
ronmental and other variables as a function of individual species’ responses, in addition to metacommunity patterns (Kéry and Royle, 
2015). 

Despite the development of novel occupancy modeling methods, application of these extensions evaluating biodiversity via alpha 
(i.e., species richness) and beta diversity remain scarce in forest wildlife literature, especially when used in conjunction with other 
techniques (Rovero et al., 2014; Bowler et al., 2016; Boron et al., 2019). Furthermore, few studies investigated biodiversity patterns of 

Fig. 1. Map of study area, Shawnee National Forest boundary, and locations of the 357 political sections (2.6-km2) surveyed using camera traps in 
the 16 southernmost counties of Illinois, USA, between January and April of the years 2008–2010. 
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temperate forest wildlife at large scales (Li et al., 2018; Crego et al., 2020). Within North America, most species richness studies occur 
in non-forested landscapes (Wait et al., 2018; Rich et al., 2019) or examine how biodiversity of specific taxonomic groups respond to 
specific disturbances (Allen et al., 2018; Janousek et al., 2019). Moreover, knowledge of influential habitat variables is of great 
conservation import. 

To address this gap in literature, we conducted camera-trapping surveys and applied novel modeling approaches to assess asso
ciations between habitat variables and alpha and beta diversity of forest mammals in southern Illinois, USA. We predicted agriculture 
would be negatively associated with alpha diversity (Lesmeister et al., 2015; Boron et al., 2019). We further predicted variables 
associated with anthropogenic influences (e.g., distance to roads, density of human structures; Trombulak and Frissell, 2001; Riem 
et al., 2012) would negatively impact alpha diversity and measurements of urbanization (e.g., urban patch density) would be 
correlated with beta diversity. Additionally, we predicted variables associated with larger, less compact forest patches (e.g., forest 
shape, forest proximity) and increased forest cover would increase alpha diversity and be positively correlated to beta diversity, as 
forest patches with these characteristics would more likely sustain a larger number of species (Saura et al., 2008). We predicted 
variables associated with patch size (e.g., edge length, patch area) would be correlated to beta diversity, as similarly sized patches 
would display similar alpha diversity due to limitations in available resources and habitat (Foster and Gaines, 1991). 

2. Material and methods 

2.1. Study area 

We studied forest wildlife in the 16 southernmost counties of Illinois, USA (Fig. 1; 16,058 km2; Lesmeister et al., 2015). The study 
area included 6 of the 14 natural land divisions in Illinois (Southern Till Plain, Wabash Border, Shawnee Hills, Ozarks, Lower Mis
sissippi Bottomlands, and Coastal Plain; Schwegman, 1973; Neely and Heister, 1987). Light-colored Alfisols dominated the study area 
(Fehrenbacher et al., 1984) with highly dark-colored Mollisols in bottomland areas near the Ohio and Mississippi rivers. Entisols were 
found throughout the study area on slopes prone to erosion and in sandy floodplains along riparian zones (Barnhardt, 2010). Soil 
parent materials were mainly loess followed by alluvium and outwash (Fehrenbacher et al., 1967). Land cover of the central portion of 
the study area primarily consisted of closed-canopy mixed hardwood forests dominated by Acer, Carya, and Quercus spp. and was 
primarily within the Shawnee National Forest (Luman et al., 1996). Agricultural cropland with primary crop rotations of corn (Zea 
mays), soybeans (Glycine max), and winter wheat (Triticum aestivum) dominated the northern regions and areas along large rivers 
(Lesmeister et al., 2015). The remaining land cover of the study area comprised grasslands (primarily cattle pasture and hay fields), 
wetlands, open water, and urban (Anon, 1996). Human and road densities were 21.5 persons/km2 and 1.5 road km/km2, respectively 
(Lesmeister et al., 2015). The Shawnee National Forest (1075 km2), Crab Orchard National Wildlife Refuge (178 km2), Cypress Creek 
National Wildlife Refuge (61 km2), along with 6 other Illinois State Parks and 15 other state managed public areas were found within 
the study area. Mean temperatures of 5.4 ± 0.4 ◦C and mean precipitation of 26.0 ± 2.0 mm/week (National Oceanic and Atmospheric 
Administration, 2010) were observed during the study period. The study area was classified as a humid subtropical temperate climate 
within the Köppen classification of climates (Ackerman, 1941). 

2.2. Camera trapping 

We conducted camera trapping surveys between January and April of the years 2008–2010, totaling about 12 months of sampling, 
following Lesmeister et al. (2015), and we used ArcGIS 9.3 (Environmental Systems Research Institute, Redland, CA) to conduct all GIS 
analyses. After identifying township and political boundaries (Illinois State Geological Survey, 2004a), we divided the study area into 
2.6-km2 political sections and surveyed sections via stratified random sampling. Land cover data from the United States Geological 
Survey’s National Land Cover Database (USGS, 2007) was used to determine percentage forest cover for each political section. Study 
design for Lesmeister et al. (2015) was focused on mesocarnivores; given species of interest were unlikely to occupy areas with little 
forest cover (Nielsen and Woolf, 2002), political sections with < 11% forest cover were eliminated. The remaining political sections 
were stratified based on 10% forest cover increments, and 360 sections were randomly selected to proportionally represent the forest 
cover of the study area. 

We surveyed 357 sections, and within each, we deployed 3–4 camera traps > 250 m apart to create a camera cluster (n = 1188 total 
camera locations and 357 camera cluster locations). At each camera trap location, we used 1 digital remote camera (Cuddeback Exicite 
[2.0 megapixel] or Capture [3.0 megapixel], Non Typical Inc., Park Falls, WI) with passive infrared sensors and incandescent flash, 
requiring both heat and motion to be detected to trigger a photographic event. Camera traps were placed opportunistically at each 
location ~0.5 m from the ground, aimed at a sardine and fatty acid scent disk (U.S. Department of Agriculture Pocatello Supply Depot, 
Pocatello, ID) placed ~2 m from the camera, and were set to be active 24 h each day with a 1-minute delay between photographs. 
During 2008, we surveyed 117 sections with 4 cameras in each section (n = 468 total camera locations). Preliminary analysis indicated 
that there was no difference in detection probability or variance between 3 and 4 camera locations/camera cluster (D. Lesmeister, 
Southern Illinois University, unpublished data). In 2009–2010, 240 sections were sampled with 3 camera traps in each cluster (n = 720 
camera locations; Lesmeister et al., 2015). Each camera location was surveyed for 3 weeks with each, individual week acting as a 
single, independent survey session. Camera images were downloaded, and photographs identified to species. We considered wild 
mammals only in our analyses. 
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2.3. Habitat variables 

We considered the effects of 22 habitat variables on mammalian species richness (Table 1) at the camera-cluster scale. We 
measured distances (m) to nearest (1) municipality (Anon, 2006), (2) major road, (3) minor paved road (FHWA, 2000; ISGS, 2004a, 
2004b), and (4) human structure (Anon, 2005). We calculated remotely sensed variables representing land cover; patch size (Anon, 
1996); and density of (1) major roads, (2) minor paved roads, (3) human structures, and (4) streams (Anon, 1994), using FRAGSTATS 
3.3 (McGarigal et al., 2002). These variables were calculated within 50 ha and 250 ha buffers at each individual camera location. Mean 
values of the camera location variables were assigned as the values of each camera cluster. Spearman’s rank correlation (Hollander 
et al., 2014) was used to confirm all 22 habitat variables were only weakly correlated with correlation coefficient values < |0.20| 
(Akoglu, 2018) and could be included in the hierarchical occupancy modeling and partial distance-based redundancy analyses. Data 
for all habitat variables were centered and normalized for model inclusion and comparison. 

2.4. Hierarchical modeling 

We performed hierarchical modeling using 3 models (null, month effect, year effect) that utilized a process model and subsequent 
observation model following Kéry and Royle (2015) and used Just Another Gibbs Sampling (JAGS; Plummer, 2003) software to model 
occupancy and alpha diversity. Due to violations of the closure assumption for occupancy modeling, we used the following 3 models to 
account for potential bias in detection and occupancy rates: 

Null model.  

Process model: zik~Bernoulli(ψk)                                                                                                                                                         

Observation model: ysumik|zik~(Ji,zikpk)                                                                                                                                               

Month model variant.  

Process model: zik ~ Bernoulli(ψk)                                                                                                                                                       

Observation model: ysumik | zik ~ Binominal(Ji,zikpk) + αi Survey Month                                                                                                  

Year model variant.  

Process model: zik ~ Bernoulli(ψk)                                                                                                                                                       

Observation model: ysumik | zik ~ Binominal(Ji,zikpk) + αs Survey Year                                                                                                    

where Ji was the number of surveys indexed by camera cluster i, and the detection frequency data, ysumik, for species k at camera 
cluster i was fit to models using latent variables z. We modeled each species as fixed effects with detection and occupancy probabilities 
calculated from detection histories for individual species. This approach accommodates imperfect detection, allows each species to 
differ in detection and occupancy probability, and yields an estimate of camera cluster-specific species richness (i.e., alpha diversity). 

Table 1 
Habitat variables calculated in FRAGSTATS 3.3 (McGarigal et al., 2002) for study of mammalian occupancy, alpha diversity, and beta diversity in the 
16 southernmost counties of Illinois, USA, between January and April of the years 2008–2010.  

Variable Acronym Description 

DIST MU Distance (m) to nearest municipality 
DIST MAJOR RD Distance (m) to nearest major road (interstate highways and arterials) 
DIST RD Distance (m) to nearest minor paved road (collectors and local roads) 
DIST STRUCT Distance (m) to nearest human structure 
MAJOR RD LENGTH Length (m) of major road (interstate highways and arterials)/ha 
RD LENGTH Length (m) of minor paved roads (collectors and local roads)/ha 
STRUCT Number of human structures/ha 
OWNERSHIP Ownership (public or private) of camera location 
URBAN PATCH Patch area coefficient of variation: standard deviation/mean patch size (ha) 
URBAN PERCENT Percentage of camera-cluster buffer comprised of urban patches 
PATCH AREA Patch area coefficient of variation: standard deviation/mean patch size (ha) 
EDGE Total length (m) of patch edge/ha 
FOREST SHAPE Forest shape index; mean perimeter-to-area of patch, increases as patch becomes less compact 
GRASS SHAPE Grassland shape index; mean perimeter-to-area ratio of patch, increases as patch becomes less compact 
STREAM LENGTH Length (m) of stream/ha 
WETLAND SHAPE Wetland shape index; mean perimeter-to-area of patch, increases as patch becomes less compact 
AG CLUMP Agriculture clumpiness (fragmentation) index, range: − 1 (patch maximally disaggregated) to 1 (patch maximally clumped) 
FOREST PROX Forest proximity index; mean sum of forest patch size (ha) divided by the squared distance (m) from focal patch 
GRASS PROX Grassland proximity index; mean sum of grassland patch size (ha) divided by the squared distance (m) from focal patch 
GRASS PERCENT Percentage camera-cluster buffer comprised of grassland patches 
SIMPSON Simpson’s diversity index of patch types; proportional abundance of each patch type 
FOREST PERCENT Percentage forest cover  
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For each model, 3 parallel chains were run using 150,000 iterations, a thinning rate of 10, and a burn in of 50,000 iterations. Deviance 
information criterion (DIC) values were used to compare models, with lower DIC values indicating a model would best predict a 
replicate dataset having the same structure as the observed data (Spiegelhalter et al., 2002). Similar to the node deviance monitored by 
WinBUGS, the deviance included within DIC was defined as.  

-2 * log(p(y|Θ))                                                                                                                                                                               

where all normalizing constants were included, with y comprising all stochastic nodes assigned values from the input data and Θ 
comprising the immediate stochastic parents of y. Stochastic parents are defined as the stochastic nodes upon which the distribution of 
y depends, when collapsing over all logical relationships (Spiegelhalter et al., 2002). This metric was used when calculating the 
effective number of parameters (pD):  

pD = Dbar – Dhat                                                                                                                                                                           

Dbar was the posterior mean of the deviance, and Dhat was a point estimate of the deviance obtained by substituting the posterior 
means (Spiegelhalter et al., 2002). These allowed for the calculation of DIC:  

DIC = Dbar + pD = Dhat + 2 * pD                                                                                                                                                  

These metrics are particularly useful when the posterior distributions of the models were obtained via MCMC. DIC acts as a hi
erarchical generalization of the Akaike information criterion (AIC; Tomohiro, 2007), and pD helps when selecting for parsimony 
through fewest estimated number of parameters (Hooten and Hobbs, 2015). 

We used the camera cluster, community occupancy estimates from models with lower DIC values than the null model in subsequent 
meta-analyses to relate model estimates to the 22 habitat variables (Table 1) following Kéry and Royle (2015), using a regression 
model with 2 residual components. The first residual estimated uncertainty among the community model analysis by utilizing the 
posterior standard deviation of the community size estimate at the site. The second residual component influenced the lack of fit, 
allowing individual data points to lie off the modeled relationship. For each model, 3 parallel chains were run using 20,000 iterations, a 
thinning rate of 10, and a burn in of 5000 iterations. Weakly informative model priors were selected and were set from 0 to 10 to 
provide minimal influence on inferences, while still allowing for calculation of posterior distributions (Syversveen, 1998). 

Convergence of model MCMC iterations was determined when Rhat values were all within 0.1 of 1.00 (Kéry, 2010). Models ≤ 5 DIC 
of the lowest ranked model were considered to be informative (Spiegelhalter et al., 2002), and further assessed for parsimony using pD 
(Hooten and Hobbs, 2015). The estimated relationships between habitat variables and species richness for the models with lowest DIC 
and pD values were plotted. We created models examining each habitat variable individually and each possible combination of 2 
habitat variables. Due to parameter constraints and model instability, models incorporating ≥ 3 habitat variables were unable to be 
created. 

2.5. Partial distance-based redundancy analysis 

Beta diversity was measured using Jaccard’s dissimilarity index through the R package vegan (Oksanen et al., 2020) in R (R Core 
Team, 2022):  

Cj = 1 – j/(a + b - j)                                                                                                                                                                        

where j is the number of species shared by 2 sites, a is the number of species at site 1, and b is the number of species at site 2 (Magurran, 
1988). Jaccard’s dissimilarity index ranges from 0 to 1, with a minimum value of Cj = 0 indicating complete compositional similarity 
among a pair of sites, and a maximum value of Cj = 1 indicating no shared species between the 2 sites. Jaccard’s dissimilarity index was 
selected due to its effectiveness in providing a pairwise comparison of sites using presence/absence data (Hao et al., 2019). 

Dissimilarity between sites was investigated using a partial distance-based redundancy analysis with first- and second-degree terms 
of explanatory variables using methods described by Borcard et al. (2018) and conducted in R package vegan. A partial redundancy 
analysis removes the effect of explanatory variables from a set of response variables before conducting a standard redundancy analysis, 
and we used a distance-based approach to assess 22 habitat variables (Table 1) potentially influencing dissimilarity between sites. We 
allowed for both first- and second-degree terms, accounting for potential linear relationship or non-linear relationships respectively, 
between the explanatory variables and dissimilarity matrix. We applied a square root transformation to the Jaccard’s dissimilarity 
matrix and computed a principal coordinate analysis of the dissimilarity matrix. We ran a redundancy analysis of the computed 
principal coordinates, acting as the response data, while constraining explanatory variables. This modelling approach is a multivariate 
equivalent of a partial regression analysis, enabling us to determine the amount of variation explained in the Jaccard’s dissimilarity 
matrix by matrices of variables while holding geographic location, mean temperature, and mean precipitation constant. This approach 
accounted for potential variation caused by spatial autocorrelation between sites and seasonal differences between survey periods. We 
ran a permutation test of terms with 999 permutations to test the significance of the environmental measures at both first- and 
second-degree terms with α = 0.05. A forward selection function was applied to all constrained and conditional variables to identify 
which variables accounted for the most variation in beta diversity and estimate how much of the total variation was accounted for. 
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2.6. Partial mantel test 

The effects of habitat variables selected through the forward selection function on beta diversity were further assessed and 
quantified using a partial Mantel test, while accounting for geographic location, and conducted through R package ecodist (Goslee and 
Urban, 2007). While a simple Mantel test is the correlation between 2 dissimilarity matrices, a partial Mantel test incorporates 
additional matrices, so the Mantel statistic describes the partial correlation of 2 dissimilarity matrices given all other explanatory 
variables. Distance matrices describing the pairwise differences in selected variables and geographic location between any 2 sites were 
calculated. Number of permutations was set to 9999, and number of iterations used for bootstrap confidence intervals was set to 5000 
and α = 0.05, while all other function arguments were set to default values. 

3. Results 

3.1. Camera trapping 

We recorded 86,486 photographic captures of 13 different mammal species or mammal groups over 29,988 camera days at 1188 
camera locations (357 camera clusters). Photographic captures of species or species-groups included bobcat (Lynx rufus), coyote (Canis 
latrans), eastern cottontail (Sylvilagus floridanus), eastern gray squirrel (Sciurus carolinensis), fox squirrel (Sciurus niger), gray fox 
(Urocyon cinereoargenteus), mouse (Peromyscus sp.), raccoon (Procyon lotor), red fox (Vulpes vulpes), southern flying squirrel (Glaucomys 
volans), striped skunk (Mephitis mephitis), Virginia opossum (Didelphis virginiana), and white-tailed deer (Odocoileus virginianus), and 

Table 2 
Photographs collected during the study of occupancy and species richness in the 16 southernmost counties of Illinois, USA, between January and April 
of the years 2008–2010. Camera locations refers to individual camera traps, and camera cluster refers to a site with 3–4 camera traps.  

Common name Species name Family 
name 

Order name Total photographic 
captures 

Percentage of camera 
locations observed 

Percentage of camera 
clusters observed 

Bobcat Lynx rufus Felidae Carnivora 412  15%  47% 
Coyote Canis latrans Canidae Carnivora 1397  39%  79% 
Eastern 

cottontail 
Sylvilagus floridanus Leporidae Lagomorpha 760  16%  38% 

Eastern gray 
squirrel 

Sciurus carolinensis Sciuridae Rodentia 1986  42%  81% 

Fox squirrel Sciurus niger Sciuridae Rodentia 1323  24%  49% 
Gray fox Urocyon 

cinereoargenteus 
Canidae Carnivora 546  8%  22% 

Mouse Peromyscus sp. Cricetidae Rodentia 467  5%  15% 
Raccoon Procyon lotor Procyonidae Carnivora 40,029  85%  99% 
Red fox Vulpes vulpes Canidae Carnivora 149  5%  16% 
Southern flying 

squirrel 
Glaucomys volans Sciuridae Rodentia 708  5%  14% 

Striped skunk Mephitis mephitis Mephitidae Carnivora 2467  22%  48% 
Virginia 

opossum 
Didelphis virginiana Didelphidae Didelphimorphia 26,643  77%  93% 

White-tailed 
deer 

Odocoileus 
virginianus 

Cervidae Artiodactyla 8607  83%  99%  

Table 3 
Estimated occupancy (ψ) and detection (p) rates with standard error for mammalian species estimated 
from the month effect N-fold community occupancy model, using data collected from remote camera 
surveys in the 16 southernmost counties of Illinois, USA, between January and April of the years 
2008–2010.  

Species Detection (p) Occupancy (ψ) 

Bobcat 0.300 ± 0.002 0.483 ± 0.004 
Coyote 0.531 ± 0.100 0.781 ± 0.002 
Eastern cottontail 0.616 ± 0.003 0.200 ± 0.001 
Eastern gray squirrel 0.630 ± 0.001 0.794 ± 0.002 
Fox squirrel 0.618 ± 0.002 0.438 ± 0.002 
Gray fox 0.627 ± 0.003 0.121 ± 0.001 
Mouse sp. 0.620 ± 0.004 0.071 ± 0.001 
Raccoon 0.898 ± 0.001 0.974 ± 0.001 
Red fox 0.566 ± 0.005 0.070 ± 0.001 
Southern flying squirrel 0.659 ± 0.001 0.068 ± 0.000 
Striped skunk 0.593 ± 0.002 0.267 ± 0.002 
Virginia Opossum 0.847 ± 0.001 0.910 ± 0.001 
White-tailed deer 0.853 ± 0.000 0.987 ± 0.001  
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total captures of species or species-group used in subsequent analyses ranged from 149 (red fox) to 40,029 (raccoon; Table 2). The 
percentage of camera locations where study animals were recorded varied from 5% (red fox, southern flying squirrel, and mouse sp. 
separately) to 85% (raccoon), while percentage of camera clusters where study animals were recorded ranged from 14% (southern 
flying squirrel) to 99% (raccoon and white-tailed deer separately; Table 2). Camera cluster alpha diversity ranged from 3 to 10 (x‾ =
6.6 ± 0.1 [SE throughout]). 

3.2. Hierarchical modeling 

Detection and occupancy rates from the month effect model ranged from 0.300 (bobcat) to 0.898 (raccoon) and 0.068 (southern 
flying squirrel) to 0.987 (white-tailed deer), respectively (Table 3), and were similar to the detection and occupancy rates from the year 
effect model (Table A.1). Ten month effect models and 3 year effect models had DIC values > 5 and were most parsimonious according 
to pD values. The highest DIC ranked and most parsimonious month effect model incorporated Simpson’s diversity index of patch types 
and distance to major road (DIC=1090.8; pD=320.9; Table 4), and the highest DIC ranked and most parsimonious year effect model 
incorporated Simpson’s diversity index of patch types and agriculture clumpiness index (DIC=1090.7; pD=322.3; Table A.2). Agri
culture clumpiness index had a polynomial relationship with alpha diversity; with highest alpha diversity estimates when agriculture 

Table 4 
The deviance information criterion (DIC) and effective number of parameters (pD) for the month 
effect model relating estimated mammalian alpha diversity values at camera clusters to habitat 
variables, using data collected from remote camera surveys in the 16 southernmost counties of Il
linois, USA, between January and April of the years 2008–2010. Habitat variables are defined in 
Table 1.  

Model DIC pD 

SIMPSON+AG CLUMP  1090.8  320.9 
STRUCT+DIST MU  1090.9  323.1 
STRUCT+FOREST PROX  1091.6  321.8 
SIMPSON+FOREST PERCENT  1092.1  323.1 
PATCH AREA+DIST MAJOR RD  1093.3  323.8 
EDGE+URBAN PERCENT  1093.9  325.0 
DIST STRUCT+FOREST PERCENT  1094.0  323.8 
PATCH AREA+SIMPSON  1094.7  326.0 
AG CLUMP+DIST MU  1095.0  325.9 
GRASS PROX+DIST MU  1095.7  325.7  

Fig. 2. Regression model predicting mammalian species richness values in relation to (A) Simpson diversity index of patch types and agriculture 
fragmentation index using month effect occupancy estimates and (B) Simpson’s diversity index of patch types and distance to major road using year 
effect occupancy estimates. Black line indicating the regression model when propagating the uncertainty for N estimates and using normalized and 
centered data collected from camera clusters in the 16 southernmost counties of Illinois, USA, between January and April of the years 2008–2010. 
Grey area indicates 95% credible interval. 
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was randomly dispersed (Fig. 2A). Simpson’s diversity index of patch types had both a polynomial (Fig. 2A) and decreasing cubic 
relationship (Fig. 2B) with alpha diversity, such that alpha diversity estimates were higher with moderate levels of Simpson’s diversity 
index of patch types. Distance to major road had a decreasing cubic relationship with mammalian alpha diversity, with alpha diversity 
estimates declining as distance to major road increased (Fig. 2B). 

3.3. Partial analyses 

Values for Jaccard’s dissimilarity index between camera sites ranged from 0.111 to 1.000. The partial distance-based redundancy 
analysis indicated model results were significant (F1, 352 =1.232, P < 0.001), but only explained a small amount of the variation 
observed between sites. Constrained matrices and conditional matrices accounted for 13.1% and 4.8% of variation in beta diversity, 
respectively. Six terms assessing the relationship between explanatory variables and the dissimilarity matrix were identified as sig
nificant when the permutation test was applied to all terms (Table 5). The forward selection function identified 2 terms as significant: 
(1) second-degree term for forest proximity index (F=2.8244, P = 0.002), and (2) first-degree term for percentage forest cover 
(F=10.716, P < 0.001). The second-degree term for forest proximity index and the first-degree term for percentage forest cover 
explained 4.6% and 3.8% of beta diversity variation, respectively. The partial Mantel test indicated differences in beta diversity were 
weakly and positively correlated with forest proximity index (rs=0.130, P < 0.001) and percentage forest cover (rs=0.130, P = 0.001). 

4. Discussion 

We used novel modeling extensions to provide insight into the complex relationships between anthropogenic influences, habitat 
heterogeneity, and species richness of forest mammals at a large scale. Sites with moderate levels of habitat heterogeneity, represented 
by Simpson’s diversity index of patch types, had highest alpha species richness. Furthermore, anthropogenic influences on the 
landscape, represented by distance to nearest major road and agriculture clumpiness index, appeared to increase alpha species richness 
by providing novel food resources and additional habitat for the generalist species that dominated our study. Forest-related variables 
were also influential on beta diversity, as expected (Joly and Meyers, 2001; Dechen Quinn et al., 2012; Lesmeister et al., 2015). 

Detection and occupancy rates for study species partially agreed with previous research in southern Illinois; variation among 
studies may have been influenced by differing (1) scales of analysis (Wilson and Schmidt, 2015), (2) use of bait (Buyaskas et al., 2020; 
Randler et al., 2020), and (3) modeling approaches (Kéry and Royle, 2015). Pease et al. (2019) observed lower occupancy and 
detection rates for white-tailed deer, eastern gray squirrel, and raccoon, but this study was conducted across a much smaller portion (i. 
e., <20 km2) of southern Illinois. Cameras were not baited by Pease et al. (2019), which may have resulted in lower detection rates of 
raccoons compared to studies using baited camera stations. Furthermore, previous studies used single-species or 2-species 
co-occurrence occupancy modeling approach and reported higher occupancy rates for mesocarnivore species (Lesmeister et al., 
2015; Morin et al., 2018). Alternatively, we used community occupancy modeling; Kéry and Royle (2015) noted different modeling 
approaches can provide widely differing results and yield new insights about relationships within the same system. 

Our study was dominated by generalist species with the ability to thrive in diverse habitat types and resilience to fragmentation or 
disturbance. Ten of 13 study species (77% of total community composition) were considered generalists: bobcat (Nielsen and Woolf, 
2002; Kolowski and Nielsen, 2008; Newbury and Hodges, 2018), coyote (Feldhamer et al., 2003; Thibault and Ouellet, 2005; Franklin 
et al., 2019), eastern cottontail (Feldhamer et al., 2003; Crawford et al., 2018), eastern gray squirrel (Williams, 2011; Amspacher et al., 
2019), mouse sp. (Elliott and Root, 2010), raccoon (Rollins and Carroll, 2001; Kirby et al. 2016; Louppe et al., 2019), red fox (Kut
schera et al., 2013; Reshamwala et al., 2018), striped skunk (Verts, 1967; Lesmeister et al., 2015; Amspacher et al., 2021), Virginia 
opossum (Allen et al., 1985; Magle et al., 2016; Greenspan et al., 2018; Walsh and Tucker, 2018), and white-tailed deer (Anstedt, 2016; 
Peebles-Spencer, 2016; Berry et al., 2019). Two study species (15% of total community composition) were considered forest specialists: 
gray fox (Feeney, 2000; Allen et al., 2021; Morin et al., 2022) and southern flying squirrel (Taulman, 2006; Rexroad, 2021). One study 
species (8% of total community composition) was considered an edge specialist: fox squirrel (Allen, 1982; Edwards et al., 1998; 
Amspacher et al., 2019). Despite their generalist behavior, forest cover is important to most of our study species. Gray squirrels can live 
in urban environments (Larson and Sander, 2022) but are often associated with denser forest cover (Edwards et al., 1998). White-tailed 
deer will opportunistically select habitat (Anstedt, 2016; Peebles-Spencer, 2016) but prefer forested habitat for thermal and escape 
cover (Harlow, 1984; Miranda and Porter, 2003). Contrastingly, the specialists within our community occasionally exploit habitat and 

Table 5 
Explanatory variables with degree terms identified as significant by the part distance-based 
redundancy test using data collected from remote camera surveys in the 16 southernmost 
counties of Illinois, USA, between January and April of the years 2008–2010. Habitat vari
ables are defined in Table 1.  

Variable Degree term P 

GRASS PERCENT First-degree  0.001 
FOREST PROX Second-degree  0.005 
EDGE First-degree  0.008 
AG CLUMP First-degree  0.025 
FOREST PERCENT First-degree  0.025 
SIMPSON Second-degree  0.034  
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resources outside of their known preferences. Gray foxes, a highly forest-adapted species (Feeney, 2000; Allen et al., 2021; Morin et al., 
2022), use forest edges near grasslands when hunting prey (Cooper et al., 2012; Cole, 2020), and fox squirrels, an edge specialist 
(Allen, 1982; Edwards et al., 1998; Amspacher et al., 2019), uses trees in dense forests for food and nesting. 

Given the behavior and ecology of the mammalian community we sampled, our results were strongly affected by detection and 
occupancy of generalist species. Given many of these species were distributed ubiquitously across the study area, understanding re
lationships between occupancy, species richness, and habitat was difficult (MacKenzie et al., 2006), as widespread detection across 
varying sites with different habitats can cause underlying patterns about species richness to be obscured. However, we interpreted 3 
and 6 habitat variables that were related to with alpha diversity and beta diversity, respectively. These variables were categorized into 
the following presumed influences on either alpha diversity or beta diversity: (1) habitat heterogeneity (i.e., Simpson’s diversity index 
of patch types, percentage grassland area, and edge index), (2) anthropogenic influences (i.e., distance to major roads and agriculture 
clumpiness index), and (3) forest-related (i.e., forest proximity index and percentage forest cover). 

Habitat heterogeneity, represented by Simpson’s diversity index of patch types, has impacted mammalian diversity both positively 
(Bowland and Perrin, 1993; Medellin and Equihua, 1998; Ceballos et al., 1999; Tews et al., 2004) and negatively (August, 1983; 
Sullivan et al., 2000). Simpson’s diversity index of patch types represents the probability that any 2 pixels selected at random would-be 
different patch types, where a patch is defined as an area of relatively homogeneous environmental conditions (McGarigal et al., 2002). 
In our study, a patch consisted of the same cover type (e.g., forest cover). Models incorporating this variable suggested moderate levels 
of habitat heterogeneity can positively influence alpha diversity, particularly for generalist species. Coyote (Riley et al., 2003), 
white-tailed deer (Dechen Quinn et al., 2012), Virginia opossum (Feldhamer et al., 2003), striped skunk (Amspacher et al., 2021), and 
eastern cottontail (Chapman et al., 1980) have all been positively associated with habitat heterogeneity; as sites with varying cover 
types and patches enable such generalist mammals to exploit different resources, while being tolerant to landscape fragmentation or 
disturbance (Devictor et al., 2008). As Simpson’s diversity index of patch types occurred in both top models examining alpha diversity 
and was identified as a significant variable by the partial distance-based redundancy test, this variable likely exerts a strong influence 
on diversity across multiple metrics. 

Edge index (Yates et al., 1997; Lidicker, 1999; Rosa et al., 2017) and percentage grassland area (Rich et al., 2016) have influenced 
mammalian diversity. Edge index is the total length (m) of patch edge/ha, where 0 indicates an entire landscape consists of a single 
patch (McGarigal et al., 2002); this variable is related to habitat heterogeneity, as it measures the relative size of the focal patch. Our 
hypothesis that variables related to patch size (e.g., edge index) would be correlated to beta diversity was supported. Edge index was 
identified as a significant variable influencing beta diversity. Given that many of our species were edge specialists, such as fox squirrel 
(Allen, 1982; Edwards et al., 1998; Amspacher et al., 2019), and generalists who use edge habitats, such as white-tailed deer (Dechen 
Quinn et al., 2012; Erb et al., 2012), eastern cottontail (Bertolino et al., 2011), striped skunk (Lesmeister et al., 2015; Amspacher et al., 
2021), and Virginia opossum (Feldhamer et al., 2003), it is unsurprising that beta diversity would influenced by the amount of forest 

Table A1 
Estimated occupancy (ψ) and detection (p) rates with standard error for mammalian species estimated 
from the year effect N-fold community occupancy model, using data collected from remote camera surveys 
in the 16 southernmost counties of Illinois, USA, between January and April of the years 2008–2010.  

Species Detection (p) Occupancy (ψ) 

Bobcat 0.299 ± 0.002 0.484 ± 0.004 
Coyote 0.531 ± 0.001 0.782 ± 0.002 
Eastern cottontail 0.658 ± 0.003 0.203 ± 0.002 
Eastern gray squirrel 0.630 ± 0.001 0.795 ± 0.002 
Fox squirrel 0.618 ± 0.002 0.438 ± 0.002 
Gray fox 0.627 ± 0.003 0.121 ± 0.001 
Mouse sp. 0.618 ± 0.004 0.070 ± 0.001 
Raccoon 0.898 ± 0.001 0.974 ± 0.001 
Red fox 0.565 ± 0.005 0.071 ± 0.001 
Southern flying squirrel 0.660 ± 0.004 0.068 ± 0.000 
Striped skunk 0.593 ± 0.001 0.268 ± 0.002 
Virginia Opossum 0.847 ± 0.001 0.910 ± 0.001 
White-tailed deer 0.853 ± 0.001 0.987 ± 0.000  

Table A2 
Deviance information criterion (DIC) and effective number of parameters (pD) for the year effect 
model relating estimated mammalian alpha diversity values of camera clusters to different habitat 
variables, using data collected from remote camera surveys in the 16 southernmost counties of Il
linois, USA, between January and April of the years 2008–2010. Habitat variables are defined in 
Table 1.  

Model DIC pD 

SIMPSON+DT MAJOR RD  1090.7  322.3 
RD LENGTH+DIST MU  1093.1  324.1 
GRASS SHAPE+DIST MAJOR RD  1093.8  324.4  
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edge present. Edge habitats provide varying cover and patches these species can exploit for different resources. Similarly, grasslands 
can provide additional habitat and cover, particularly for prey species, and thereby also attract predator species pursuing prey. For 
example, red foxes have been affiliated with grasslands (McDonald et al., 2008), as prey species, such as eastern cottontail, use 
grasslands (Fa et al., 1992; Crawford et al., 2018). Coyote abundance was higher in areas with grassland due to prey presence (e.g., 
white-tailed deer fawns; Rohm et al., 2007; Cherry et al., 2016), and grassland cover has been informative for modeling bobcat habitat 
statewide in Illinois (Woolf et al., 2002). As percentage grassland cover and edge index were only significant in 1 analysis, these 
variables appear to exert only minor influences on mammalian diversity in southern Illinois. 

Anthropogenic influences, represented by agriculture clumpiness index and distance to major roads, are also known to positively 
(Racey and Euler, 1982; McKinney, 2002; Santini et al., 2018) or negatively (Riem et al., 2012, Newbold et al., 2015; Buffa et al., 2018) 
impact mammalian alpha diversity. However contrary to our hypothesis, both variables indicated low to moderate levels of anthro
pogenic influences increased mammalian alpha diversity. Agriculture clumpiness index was informative in a month effect model; this 
variable indicates the level of clustering among agricultural patches (McGarigal et al., 2002), and suggested randomly dispersed 
agriculture positively influenced mammalian alpha diversity. This was contrary to our original hypothesis that alpha diversity would 
be negatively related to agriculture. Rather, agriculture can provide additional resources for generalist mammals (Murphy et al., 1985; 
Beasley and Rhodes, 2010), or recreate edges and habitats such species were evolved to use (Koprowski, 1994). Within a matrix of 
largely natural habitat, agriculture can promote habitat heterogeneity and provide access to novel food resources or foraging op
portunities (Santini et al., 2018). Occupancy of fox squirrels (Rizkalla et al., 2009), raccoons (Dijak and Thompson, 2000; Wilson and 
Nielsen, 2007), Virginia opossum (Blumenthal and Kirkland, 1976), and eastern cottontail (Swihart and Yahner, 1982) is positively 
linked with agricultural edges, while striped skunk occupancy has been positively related to higher levels of agriculture present 
(Lesmeister et al., 2015). Furthermore, mouse species are known to use tree lines, shelterbelts, and fencerows in agricultural habitats 
(Rizkalla et al., 2009). Therefore, agriculture that is present but not dominant at a site would likely attract many of our study species. 
Similarly, roads may also create heterogeneity that attracts mammalian species as our top year effect model examining alpha diversity 
identified distance to nearest major road as influential on biodiversity with lowest diversity furthest from major roads. Roads also 
provide foraging opportunities and potential corridors for white-tailed deer (Erb et al., 2012) and coyotes (Tigas et al., 2002), thus 
attracting these species to sites closer to roads. Additionally, densities of small mammals can be higher near roads given low risk of 
mortality due to (1) low movement rates across roads and (2) road avoidance by predators (Adams and Gies, 1983; Fahrig and Ryt
winski, 2009). Both agriculture clumpiness index and distance to major road were highest ranked and part of the most parsimonious 
models for assessing alpha diversity, and agriculture clumpiness index was identified by the partial distance-based redundancy test as 
being influential on beta diversity, suggesting that anthropogenic influences affect biodiversity across multiple measurements. 

Our hypothesis that forest cover related variables would influence mammalian alpha and beta diversity was partially supported. 
Forest proximity index represents the mean sum of forest patch size (ha) divided by the squared distance (m) from the focal patch and 
increases as forest patches are closer and more contiguous (McGarigal et al., 2002). While we interpreted no support for the influence 
of these variables on alpha diversity, both the partial distance-based redundancy analysis and partial Mantel tests reported the in
fluence of forest cover and forest proximity on beta diversity. The weak, positive correlations between beta diversity and percentage 
forest cover and forest proximity index demonstrated the reliance on forests by our study species (Harlow, 1984; Lanham, 1998; Joly 
and Meyers, 2001) and supported our hypothesis that larger forest patches with higher forest cover would be positively correlated with 
beta diversity. The correlation between beta diversity and these forest related variables was likely due to the reliance of many study 
species on forested sites for cover and food (Harlow, 1984; Edwards et al., 1998; Taulman, 2006; Anstedt, 2016; Morin et al., 2022). 
Gray fox use forest stands to escape predation via climbing trees (Lesmeister et al., 2015; Morin et al., 2022), while southern flying 
squirrels (Rexroad, 2021), fox squirrels (Amspacher et al., 2019), and eastern gray squirrels (Edwards et al., 1998) use forested sites for 
den-making and food. Even larger species, such as white-tailed deer, use forested areas for food and thermal or escape cover (Harlow, 
1984). 

5. Conclusion 

Our study provides evidence for the influence of habitat heterogeneity, anthropogenic influences, and forest-related variables on 
mammalian occupancy and alpha and beta diversity, in addition to demonstrating the importance of examining biodiversity at 
multiple scales and the usefulness of hierarchical modeling approaches to investigate ecological questions. While total forested area in 
Illinois has remained stable over recent years, changes in land ownership and land use for agriculture has resulted in shifting dis
tributions of forest patches (Crocker et al., 2017). Additionally, southern Illinois contains multiple areas designated as Wildlife-Urban 
Interfaces, increasing the risk of forest fragmentation (Radeloff et al., 2005; Crocker et al., 2017). Hierarchical modeling provides a 
novel approach to investigate how such changes influence natural communities and alter biodiversity (Royle and Dorazio, 2009; 
Zipkin et al., 2009). By allowing researchers to examine difficult ecological questions and test increasingly complex hypotheses about 
the natural world, hierarchical modelling has proven to be an effective tool in researchers’ toolbox. Differing metrics of biodiversity 
have similarly proven to be effective tools in ecological research (Magurran, 2021). By examining how environmental characteristics 
influence different metrics of biodiversity, researchers are able to gain a more comprehensive understanding of current ecological 
processes. 
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