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a b s t r a c t

We present PNW-Cnet v4, a deep neural net with an associated Shiny-based application designed
to facilitate efficient data processing to detect terrestrial wildlife species through passive acoustic
monitoring. PNW-Cnet v4 is a deep convolutional neural network that detects audio signatures of 37
focal species of birds and mammals that inhabit forests of the Pacific Northwest, USA, along with other
commonly occurring forest sounds. The primary objective of developing PNW-Cnet v4 was to support
a long-term northern spotted owl (Strix occidentalis caurina) monitoring program. By incorporating
additional species classes, PNW-Cnet v4 expands applicability of the program to broadscale biodiversity
research and monitoring. Using the Shiny app with PNW-Cnet v4, users can process audio data using a
graphical user interface, summarize apparent detections visually, and export results in tabular format.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v4
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00141
Permanent link to reproducible capsule
Legal code license MIT License
Code versioning system used Git
Software code languages, tools and services used R, RStudio, conda, SoX
Compilation requirements, operating environments and dependencies Windows 64-bit
If available, link to developer documentation/manual https://github.com/zjruff/Shiny_PNW-Cnet/blob/main/Shiny_PNW-

Cnet_installation_and_use.docx
Support email for questions zjruff@gmail.com

1. Motivation and significance

Passive acoustic monitoring (PAM) is an emerging approach
n wildlife research that has seen wide adoption in recent years,
argely due to the availability of high-quality autonomous record-
ng units (ARUs). ARUs are typically small, rugged, battery-powered
udio recorders that can operate unattended for long periods in
he field. PAM has the advantage of being largely non-disruptive
o wildlife, capturing unprompted vocalizations and other audible

∗ Corresponding author at: Department of Fisheries, Wildlife, and Conserva-
ion Sciences, Oregon State University, Corvallis, OR, United States.

E-mail address: ruffz@oregonstate.edu (Zachary J. Ruff).

behaviors over long periods, and ARUs can be deployed in large
numbers to achieve large spatial coverage as well. This has en-
abled researchers to collect very large audio datasets, potentially
comprising millions of hours of recordings.

PAM is used as part of a long-term population monitoring
program for northern spotted owls (Strix occidentalis caurina) in
the Pacific Northwest, USA (Lesmeister et al. 2021 [1], Kantor
et al. 2022 [2]). Northern spotted owls were listed as Threat-
ened under the Endangered Species Act in 1990 and have un-
dergone widespread population declines due to persistent loss
of old-growth forest habitat and competition from barred owls
(Strix varia), which are closely related but invasive in the region

(Lesmeister et al. 2018 [3], Franklin et al. 2021 [4], Wiens et al.
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Fig. 1. General life cycle of passive acoustic monitoring data processed using PNW-Cnet. PNW-Cnet and the associated Shiny application are designed to facilitate
steps in Part II of this cycle, while the steps in Part I and Part III are completed using external software or outside of the computing environment.

2021 [5]). Both species are highly vocal, with distinctive vocaliza-
tions (Forsman et al. 1984 [6], Odom and Mennill 2010 [7]), mak-
ing PAM an effective tool for detecting their presence (Duchac
et al. 2020 [8]). The PAM program designed for northern spotted
owls has also been effective for studying a wide range of other
vocal wildlife species in Pacific Northwest forests (Duchac et al.
2021 [9], Lesmeister et al. 2022 [10]).

PAM generates large volumes of data, making manual review
f the data impractical and necessitating automated detection to
ocate signals of interest. The first version of the neural network
PNW-Cnet v1) was effective in detecting vocalizations of six owl
pecies (Ruff et al. 2020 [11]). Successive versions have shown
mproved performance through the inclusion of additional target
lasses and larger training datasets. PNW-Cnet v1 was trained
sing 94,589 spectrogram images from vocalizations detected
sing a semi-manual process (Ruff et al. 2020 [11]). Ruff et al.
2021 [12]) expanded to 14 species identified with PNW-Cnet v2
173,964 training images) and described an efficient workflow for
ata processing. PNW-Cnet v3 was trained on 194,524 images and
etected 25 different species (Lesmeister et al. 2022 [10]).
The Shiny application was developed to support data pro-

essing by non-expert users using the same automated detection
ools used by the northern spotted owl PAM program, running on
tandard personal computers through familiar, widely available
ree software such as RStudio. An earlier version of this applica-
ion has been published (Ruff et al. 2021 [12]), but we have made
ubstantial improvements for ease of use and interpretation and
ave incorporated advancements in neural network performance
ith PNW-Cnet v4, which was trained on 426,605 images and
etects 37 species (Table 1).
The typical end user envisioned for this software is a wildlife

iologist using ARUs to survey for owls and other forest wildlife
isted in Table 1. ARUs are deployed for several weeks or months
t a time, recording for several hours per day on a programmed
chedule. Once the data have been retrieved from the field, the
ser then uses the software to process these audio recordings,
enerating a set of potential detections of the target species.
hese detections are then verified by knowledgeable human re-
iewers or used directly as input for ecological analyses. The

software has high accuracy for most classes, but manual veri-
fication is generally advisable to minimize the impacts of false
positive detections.

Various free and commercial programs exist for automated or
semi-automated detection of animal vocalizations, e.g. Kaleido-
scope (Wildlife Acoustics, Inc [13]), Raven (Cornell Lab 2022 [14]),
and the R package warbleR (Araya-Salas and Smith-Vidaurre
2017 [15]). PNW-Cnet v4, and the associated Shiny app, fills
a useful niche in that it fits neatly into a practical workflow
developed specifically to facilitate long-term monitoring of target
species at large scales, including efficient processing of audio data
and the extraction and verification of apparent target species
detections (Fig. 1).

2. Software description

2.1. Software architecture:

The software is provided as a Shiny app (Chang et al. 2021 [16])
a graphical user interface that can be launched from RStudio
(RStudio Team 2021 [17]). Initial setup includes the installation
of R (R Core Team 2021 [18]) and RStudio, several R packages,
and the program Sound eXchange (Bagwell et al. 2015 [19]).
The source code is written entirely in R. Some of the required
R packages depend on Python, so it is also necessary to create a
conda environment (Anaconda 2016 [20]) through which Python
code can be executed. We recommend using Miniconda for this
purpose, as it can be installed through RStudio for ease of setup.
The app uses SoX to generate spectrograms and extract short
audio clips.

The trained PNW-Cnet v4 neural network model is provided as
an HDF5 file called PNW-Cnet_v4_TF.h5, which is included with
the Shiny application. PNW-Cnet v4 is a deep convolutional neu-
ral network that has been trained to recognize call signatures of
37 species of birds and mammals found in the Pacific Northwest,
as well as several other miscellaneous sounds, in spectrogram
images (Table 1). The trained model file can be used indepen-
2
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Table 1
Target classes detected by PNW-Cnet v4 and associated performance metrics. Except where otherwise noted, the vocalization or sound type described by each class is
the typical territorial call for each species. "In training set" and "In test set" indicate the number of images containing call signatures of each class that were used to
train and test the model, respectively. "Apparent detections" indicates the number of images to which PNW-Cnet v4 assigned a score ≥0.95 for each class. Precision
s defined as the proportion of apparent detections that were confirmed to be positive examples, i.e., true positives / apparent detections. Recall is defined as the
roportion of positive examples in the test set that were assigned a score ≥0.95 by PNW-Cnet v4, i.e., true positives / available positive examples. The full training
et included 426,605 images, some of which contained multiple target classes. In some cases, the test set did not contain enough positive examples of a particular
lass to accurately estimate performance metrics; metrics for these classes are marked "NA". For details on the composition of the training and test datasets and
erformance metrics, see Lesmeister et al. (2022). For details on target classes, especially those included in previous versions of PNW-Cnet, see Ruff et al. (2021)
nd Lesmeister et al. (2022).
Species Scientific name Type Class code Sound In training

set
In test set Apparent

detections
Precision Recall

Northern
saw-whet owl

Aegolius acadicus Owl AEAC 15,395 5,287 4,892 0.979 0.906

Great horned owl Bubo virginianus Owl BUVI 14,357 5,059 4,486 0.990 0.878
Northern
pygmy-owl

Glaucidium gnoma Owl GLGN 14,354 8,972 7,708 0.986 0.847

Barred owl Strix varia Owl INSP Inspection call 16,558 3,239 1,951 0.924 0.557
Western
screech-owl

Megascops
kennicottii

Owl MEKE 16,406 3,488 2,823 0.987 0.799

Flammulated owl Psiloscops
flammeolus

Owl PSFL 18,685 4,591 4,594 0.849 0.850

Northern spotted
owl

Strix occidentalis
caurina

Owl STOC Location call 24,729 10,118 6,372 0.835 0.526

Northern spotted
owl

Strix occidentalis
caurina

Owl STOC_IRREG Series call 2,582 3,030 773 0.750 0.191

Barred owl Strix varia Owl STVA Two-phrase
hoot

29,746 7,200 4,032 0.973 0.545

Barred owl Strix varia Owl STVA_IRREG Series call 12,452 1,214 527 0.981 0.426
Spotted or Barred
owl

Strix spp. Owl WHIS Contact
whistle

1,763 807 433 0.820 0.440

Common raven Corvus corax Corvid COCO 21,524 5,436 4,205 0.924 0.714
Steller’s jay Cyanocitta stelleri Corvid CYST 19,901 4,303 1,349 0.963 0.302
Clark’s nutcracker Nucifraga

columbiana
Corvid NUCO 911 0 1 NA NA

Canada jay Perisoreus
canadensis

Corvid PECA 9,584 1,313 1,069 0.920 0.749

Canada goose Branta canadensis Game bird BRCA 4,104 1,009 773 0.984 0.754
Sooty grouse Dendragapus

fuliginosus
Game bird DEFU 11,095 2,379 1,387 0.981 0.572

Mountain quail Oreortyx pictus Game bird ORPI 3,703 787 215 0.726 0.198
Band-tailed pigeon Patagioenas

fasciata
Game bird PAFA 10,197 3,735 3,122 0.989 0.827

Mourning dove Zenaida macroura Game bird ZEMA 4,048 2,550 2,476 0.742 0.720
Marbled murrelet Brachyramphus

marmoratus
Other bird BRMA Flight call 5,757 1,942 1,798 0.987 0.914

Common
nighthawk

Chordeiles minor Other bird CHMI Call 1,282 133 12 1.000 0.090

Common
nighthawk

Chordeiles minor Other bird CHMI_IRREG Boom 1,456 103 28 0.643 0.175

Common poorwill Phalaenoptilus
nuttallii

Other bird PHNU 7,692 245 208 0.750 0.637

Gray wolf Canis lupus Mammal CALU Howl 11,855 0 2 NA NA
American pika Ochotona princeps Mammal OCPR 844 25 10 NA NA
Douglas’ squirrel Tamasciurus

douglasii
Mammal TADO1 Rattle 9,090 3,337 2,770 0.984 0.817

Douglas’ squirrel Tamasciurus
douglasii

Mammal TADO2 Chirp 8,280 2,381 1,878 0.964 0.761

Chipmunk Neotamias spp. Mammal TAMI Chirp 9,714 5,288 4,942 0.942 0.880
Hermit thrush Catharus guttatus Songbird CAGU 15,072 9,307 3,917 0.989 0.416
Swainson’s thrush Catharus ustulatus Songbird CAUS 9,419 5,402 3,663 0.916 0.621
Olive-sided
flycatcher

Contopus cooperi Songbird CCOO 3,718 599 184 0.940 0.289

Wrentit Chamaea fasciata Songbird CHFA 5,457 2,630 2,052 0.984 0.768
Varied thrush Ixoreus naevius Songbird IXNA 15,327 11,135 3,202 0.995 0.286
Townsend’s
solitaire

Myadestes
townsendi

Songbird MYTO Call 750 70 3 NA NA

Spotted towhee Pipilo maculatus Songbird PIMA Call 637 147 76 0.895 0.463
Chickadee Poecile spp. Songbird POEC Song 2,305 112 7 NA NA
Nuthatch Sitta spp. Songbird SITT 11,463 5,914 2,561 0.990 0.429
American robin Turdus migratorius Songbird TUMI Whinny 5,549 262 33 0.424 0.053
Northern flicker Colaptes auratus Woodpecker COAU Series 12,258 4,337 4,102 0.935 0.884

(continued on next page)

dently of the Shiny application; the neural net can therefore be
loaded and used by other scripts or applications and is freely
adaptable for other purposes, e.g., transfer learning or retraining
for recognition of other species or sounds.

2.2. Software functionalities:

The user interface is simple and straightforward to use, con-
sisting of a single window with a side panel containing input
3
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Table 1 (continued).
Species Scientific name Type Class code Sound In training

set
In test set Apparent

detections
Precision Recall

Northern flicker Colaptes auratus Woodpecker COAU2 ‘‘Skew’’ 1,090 360 0 NA NA
Downy
woodpecker

Dryobates
pubescens

Woodpecker DRPU Call 2,394 3 3 NA NA

Woodpecker spp. Woodpecker DRUM Drum,
non-sapsucker

5,973 1,036 19 0.579 0.011

Pileated
woodpecker

Dryocopus pileatus Woodpecker HYPI Call 9,437 2,369 1,913 0.926 0.748

Sapsucker Sphyrapicus spp. Woodpecker SPRU Drum 2,257 266 2 NA NA
Domestic dog Nuisance DOG Bark 16,209 4,016 625 0.934 0.145
Insect buzz Nuisance FLY 23,926 6,400 764 0.987 0.118
Frog chorus Nuisance FROG 10,194 9,480 8,038 0.992 0.841
Human speech Nuisance HOSA 5,947 2,188 1,155 0.896 0.473
Gunshot Nuisance SHOT 1,247 62 79 0.190 0.242
Yarder (machine) Nuisance YARD 6,288 2,194 1,826 0.906 0.754

controls and a main panel for displaying information and results.
Most controls are disabled on launch and become active during
the processing workflow as required inputs become available,
implicitly guiding users through the correct procedure.

A typical usage of this software would be processing the data
rom a single field site with one or more recording stations
Fig. 1). ARUs are deployed at these stations, allowed to record
or several weeks, and retrieved along with the data (Fig. 1, Steps
and 2). After retrieval, the files are organized into a directory

tructure that reflects the field sampling scheme, and filenames
re standardized to indicate where and when each recording was
ade (Fig. 1, Step 3).
The user launches the program through RStudio, inputs the

arget directory and clicks the Check Directory button. The pro-
ram verifies that the target directory is valid and contains read-
ble audio files. The user then clicks the Process Files button. The

program generates spectrograms representing non-overlapping,
12-s segments of audio in the frequency range 0 – 4000 Hz. The
program then uses the PNW-Cnet v4 model to generate class
scores for each image and writes the scores to a file (Fig. 1,
Step 4). The program also creates a file summarizing apparent
detections, i.e., the number of clips with scores exceeding a
detection threshold (generally 0.95) for each class. Optionally,
users can use the Explore Detections button to view counts of
apparent detections plotted graphically by recording station over
time (Fig. 1, Step 5; Fig. 2).

Users can then use the Create Review File button to write
the apparent detections to file. Audio segments included in the
review files are those to which PNW-Cnet v4 assigned a score
≥ 0.25 for the northern spotted owl classes or ≥ 0.95 for any
other class. Two review files are created. One is simply a filtered
version of the PNW-Cnet prediction file with additional columns
for the predicted class, station, and recording week. The other is
formatted to be opened in Kaleidoscope, which can be used to
review apparent detections and apply identification tags (Fig. 1,
Step 6).

Once the review files are generated, the user can choose to
extract apparent detections as short audio clips for archival or
other purposes by clicking the Extract Review Clips button.

3. Illustrative examples

To illustrate the processing workflow, we used the Shiny app
to process two weeks’ worth of data from a typical Northern
Spotted Owl monitoring site in the Oregon Coast Range. The app
processed 1,133 files totaling 501.1 h of audio, generating 150,390
spectrogram images, classifying the images with the PNW-Cnet
v4 model, and writing the output to file, in four hours and 21 min
on a desktop computer with an 8-core processor and 16 GB

of memory. This process is demonstrated in the Supplemen-
tary Video, and additional details are provided in Supplementary
Material.

The review files included 14,151 apparent detections covering
36 of the 51 target classes. This represents a non-trivial portion
of the full dataset, and reviewing all of these detections in detail
would take several days. However, most users are not equally in-
terested in all classes. In this case, most of the apparent detections
were of classes representing ubiquitous, highly vocal songbirds
or ‘‘nuisance’’ sounds like buzzing insects (Table 2); such classes
typically would not be reviewed in detail. Conversely, detections
of rare species of conservation concern might be reviewed fully.
The review file is structured to allow users to apply different
levels of review effort to each class as needed.

In this case, we found it was only necessary to review 633
clips from the review file (representing 4.5% of the review file and
0.4% of the full dataset) to construct weekly encounter histories
for all 36 classes. This review process took one of the authors
(ZR) approximately one hour to complete. We confirmed that
28 of the 36 classes were present in all combinations of station
and week in which they were predicted to be present, and 31 of
the 36 classes were confirmed present at all the stations where
they were predicted to be present (Table 2). Only three of the
36 classes, representing just 85 apparent detections, were not
confirmed present at the site.

4. Impact

The potential impact of PNW-Cnet v4 and the associated Shiny
application is significant for users conducting bioacoustic re-
search, particularly in the Pacific Northwest, and the potential
user base is large. Every year, federal agencies including the
US Forest Service, US Fish and Wildlife Service, National Park
Service, and US Bureau of Land Management conduct thousands
of surveys for northern spotted owls for timber harvest clear-
ance and population monitoring. Many more project clearance
surveys are conducted by state and provincial governments in
California, Oregon, Washington, and British Columbia. Addition-
ally, private companies in the region are required to survey
for northern spotted owls prior to beginning timber harvest,
construction, and other projects with potential impacts on local
wildlife. Transitioning from traditional call-back surveys (i.e., ob-
servers broadcasting recorded target species calls to elicit a ter-
ritorial response) to PAM decreases risks to sensitive northern
spotted owl populations and increases the potential for efficient,
large-scale surveys in remote areas, improving our ability to
monitor the species throughout the Pacific Northwest. PNW-Cnet
v4 is an integral component of northern spotted owl monitoring
(Lesmeister and Jenkins 2022 [21]) and, when followed by sex

prediction modeling (Dale et al. 2022 [22]), can inform pair status

4
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Fig. 2. The user interface of the PNW-Cnet v4 Shiny app in Input (A) and Explore (B) view.

nd multi-state occupancy models (Appel et al. 2023 [23]; Weldy
t al. 2023 [24]). Marbled murrelets (Brachyramphus marmora-
us), another target class, are also an imperiled species and of
ignificant timber management concern due to association with
ld-growth forest for nesting (Spies et al. 2019 [25]). PAM is ef-
ective at detecting marbled murrelets and is a viable alternative

to traditional survey methods for monitoring populations (Borker
et al. 2015 [26]).

As it becomes more feasible to deploy high-quality ARUs in
large numbers, these tools have seen increasing use in wildlife
monitoring and pre-project forest surveys, resulting in audio data
collection on vast scales. However, audio data processing remains
a significant bottleneck between data collection and ecological
5
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Table 2
Results of processing ca. 500 hours of audio with the PNW-Cnet v4 Shiny app. The Review file contained 14,151 clips with a score ≥0.25 for a northern spotted owl
lass (n = 74) or ≥0.95 for any other class. We reviewed enough of these apparent detections to confirm the presence of each class at each combination of station
nd week in which they were predicted to be present. See Table 1 for more information on each class.
Class code Sound Apparent

detections
Station-week
presence
predicted

Station
presence
predicted

Clips
reviewed

Detections
confirmed

Station-week
presence
confirmed

Station
presence
confirmed

AEAC Northern saw-whet owl 46 5 3 15 15 5 3
BUVI Great horned owl 9 3 3 5 3 1 1
CAGU Hermit thrush 2304 7 4 21 21 7 4
CAUS Swainson’s thrush 13 4 3 11 10 3 3
CCOO Olive-sided flycatcher 12 1 1 3 3 1 1
CHFA Wrentit 92 4 2 12 12 4 2
COAU Northern flicker 83 7 4 27 12 3 2
COCO Common raven 258 8 4 25 25 8 4
CYST Steller’s jay 1507 8 4 24 24 8 4
DRUM Woodpecker spp. 159 2 1 6 6 2 1
FLY Insect buzz 2775 8 4 24 24 8 4
FROG Frog chorus 4 1 1 4 3 1 1
GLGN Northern pygmy-owl 460 6 4 18 17 6 4
HYPI Pileated woodpecker call 57 8 4 18 17 8 4
INSP Barred owl inspection call 246 8 4 24 24 8 4
IXNA Varied thrush 85 5 3 14 14 5 3
MEKE Western screech-owl 203 8 4 20 16 6 4
MYTO Townsend’s solitaire 102 7 4 19 19 7 4
NUCO Clark’s nutcracker 2 1 1 2 0 0 0
OCPR American pika 9 2 1 9 0 0 0
ORPI Mountain quail 1631 8 4 24 24 8 4
PAFA Band-tailed pigeon 726 8 4 24 24 8 4
PECA Canada jay 14 7 4 14 13 7 4
PIMA Spotted towhee 1 1 1 1 1 1 1
SHOT Gunshot 2 1 1 2 2 1 1
SITT Nuthatch 1906 8 4 24 24 8 4
SPRU Sapsucker 2 1 1 2 2 1 1
STOC Northern spotted owl 74 7 4 74 0 0 0
STVA Barred owl 130 8 4 23 22 8 4
STVA_IRREG Barred owl 133 7 4 19 19 7 4
TADO1 Douglas’ squirrel 78 8 4 24 24 8 4
TADO2 Douglas’ squirrel 307 8 4 23 22 7 4
TAMI Chipmunk 289 6 3 38 20 6 3
TUMI American robin 8 4 2 8 8 4 2
YARD Yarder (machine) 396 8 4 25 24 8 4
ZEMA Mourning dove 28 2 2 7 7 2 2

analysis. Robust, efficient, and accessible tools are needed to
bridge this gap and allow biologists to realize the benefits of
PAM. Tools that run well on consumer-grade desktop computers
are especially needed, as these will allow project planners to
tailor their available processing power to the scale of the planned
surveys by simply purchasing additional computers that can be
dedicated to processing the data collected.

5. Conclusions

We have presented a simple and easy-to-use tool that enables
ildlife biologists and other non-expert users to process their
wn data collected for PAM focused on imperiled wildlife species
n Pacific Northwest forests. The Shiny app with PNW-Cnet v4
uns well on consumer-grade hardware, facilitating the efficient
rocessing of large quantities of acoustic data. The program is
esigned to fit within a practical and efficient workflow, allowing
he user to convert raw data to meaningful ecological results in a
easonable timeframe, generating useful information that can in-
orm timely management decisions, drive research, and decrease
otential harm to sensitive species. We stress that the intended
orkflow for the program includes verifying the neural network’s
pparent detections manually to remove false positive detections,
hich can potentially bias inferences drawn from the data. Some
arget species, such as the northern spotted owl, are targeted in
all-back surveys and therefore warrant particular care because
hese surveys can contaminate PAM data with false positives of
umans mimicking territorial spotted owls. Recorded northern
potted owl calls broadcasted and then recorded by PAM can be

difficult to distinguish from true northern spotted owl calls. As
part of the regular workflow of a PAM program, we encourage
manual verification of detections and soliciting information from
call-back survey crews on the timing and location of their surveys.
As an additional measure, call-back surveyors can play a standard
artificial tone (in the same frequency range as northern spotted
owls) at the conclusion of surveys that identifies those spotted
owl calls as call-back surveys.
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