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A B S T R A C T   

Population monitoring is an essential component of biodiversity conservation and management, but low 
detection probabilities for rare and/or cryptic species makes estimating abundance and occupancy challenging. 
Passive acoustic monitoring combined with machine learning algorithms represents a potential path forward to 
effectively and efficiently monitor the occurrence of rare vocalizing species across entire forest landscapes. Our 
objectives were to develop and implement a convolutional neural network (PNW-Cnet) to identify vocalizations 
of a rare and threatened forest nesting bird species – the marbled murrelet (Brachyramphus marmoratus) – in the 
Pacific Northwest, U.S.A., 2018–2021. We used PNW-Cnet predictions from broadscale passive acoustic moni
toring data to examine spatiotemporal patterns in the distribution of murrelets. PNW-Cnet showed sufficiently 
high prediction accuracy (overall precision > 0.9) to enable broadscale population monitoring. Spatiotemporal 
analysis showed that annual peak murrelet call abundance occurs in ordinal weeks 28–32 (late July–Mid August) 
but this varied by study area. The greatest number of detections typically occurred in the Olympic Peninsula and 
Oregon Coast Range where late-successional forest dominates and nearer to ocean habitats. We demonstrate that 
passive acoustic monitoring can be used to understand intensity of use across broad scales for a rare and cryptic 
species in addition to the typical detection/non-detection data that are often collected. Passive acoustic moni
toring combined with PNW-Cnet offers considerable promise for species distribution modeling and long-term 
population monitoring for rare species.   

1. Introduction 

Population monitoring is an essential component of biodiversity 
conservation and management for providing the data and understanding 
needed for managers to make informed decisions. Although the resolu
tion of data required depends on the context of the decision(s) (reviewed 
in Conroy and Peterson, 2013), it has become increasingly common to 
focus on species occurrence to examine population status and trends 
(Betts et al., 2007; Adams et al., 2013; Lesmeister et al., 2015; Duarte 
et al., 2021), quantify the effects of management actions on species 
(Bender et al., 2015; Fuller et al., 2016; Gaylord et al., 2023), and 
identify unoccupied land management project areas to avoid harm to 

species of conservation concern (Evans Mack et al., 2003; Lindenmayer 
et al., 2017; Appel et al., 2023). Detecting rare species is a central 
problem in conservation biology because most species of conservation 
concern tend to be rare (Whittaker, 1965). Indeed, whether a species is 
detected within an occupied area depends on the number of individuals 
available for detection, the probability of detecting one or more of those 
individuals, and the sampling effort (Bayley and Peterson, 2001; Royle 
and Nichols, 2003). This complicates attempts to directly use moni
toring data (particularly when sampling effort is relatively low) to es
timate the occurrence of rare and/or cryptic species because they are, by 
definition, low in abundance and/or hard to detect. Thus, survey efforts 
that yield no detections for these species are largely considered absence 
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of evidence, rather than evidence of absence (MacKenzie, 2005). 
The marbled murrelet (Brachyramphus marmoratus; hereafter 

murrelet) is a small seabird native to coastal environments along the 
Pacific Coast from California to the Aleutian Islands, U.S.A. (Nelson, 
2020). Despite spending most of its time foraging in nearshore oceanic 
waters (Northrup et al., 2018; Nelson, 2020), murrelets typically nest in 
the late-successional, old-growth forests that are generally located 
within 80 km of the coastline (Whitworth et al., 2000; Hull et al., 2001; 
Baker et al., 2006; Barbaree et al., 2015; Wilk et al., 2016). Due to 
estimated declines in abundance at sea, murrelets are listed as threat
ened from California, U.S.A. to British Columbia, Canada (U.S. Fish and 
Wildlife Service, 1992; Committee on the Status of Endangered Wildlife 
in Canada [COSEWIC], 2012). Although the threats murrelets face are 
manifold (Raphael et al., 2002; Betts et al., 2020; Valente et al., 2023; 
Strong and Duarte, 2023), forest management practices in and adjacent 
to potential nesting habitat have long been a source of conflict in the 
Pacific Northwest, U.S.A. Indeed, murrelets were one of the major 
drivers behind the creation of the Northwest Forest Plan, which guides 
management on approximately 10 million ha of federally managed 
forestlands. Therefore, actions aimed at conserving murrelets and their 
habitats have direct effects on the people and economy of the region 
(reviewed in Raphael, 2006; Spies et al., 2019). 

Murrelet monitoring across forest landscapes is currently conducted 
through two separate efforts. The first involves relating nest locations to 
remotely sensed habitat products to estimate status and trends in suit
able nest habitat (Huff et al., 2006; Raphael et al., 2011; Raphael et al., 
2016; Lorenz et al., 2021). Unfortunately, murrelet nest location data 
are extremely rare due to the cryptic nature of inland flights, the cost 
and difficulty of transmitter tagging and tracking birds to their nests, 
and the remote and rugged nature of the forests used for nest habitat. 
Moreover, habitat suitability is generally not a good indicator of species 
occurrence given the dynamic nature in which species use and/or 
occupy suitable habitats (reviewed in Royle et al., 2012). 

The second, more common monitoring method uses audio-visual 
surveys to detect inland murrelet vocalizations and flight behavior 
indicative of nesting activity (Evans Mack et al., 2003). Audio-visual 
surveys involve navigating forested habitats during the pre-dawn 
period to begin surveys before sunrise in an attempt to hear or visu
ally identify murrelets as they fly at high velocities above and through 
late-successional, old-growth forest stands with multilayered canopies 
and large limbs used for nesting (Evans Mack et al., 2003). Detection 
probabilities are typically low (Bigger et al., 2006; Valente et al., 2021) 
and most detections are auditory. Consequently, inferring absence with 
confidence necessitates a substantial number of surveys (Evans Mack 
et al., 2003). 

Although human-based observations have been the standard for 
surveying murrelets in forests, the field of ecology is undergoing a rapid 
transformation due to the increasing availability of massive amounts of 
observational data made possible by technological advancements 
(reviewed in Tosa et al., 2021; Tuia et al., 2022). Improvements in 
passive acoustic monitoring with autonomous recording units (ARUs) 
constitute a promising approach to monitor vocalizing species (Gibb 
et al. 2018). They also represent a potentially effective alternative for 
monitoring rare species with low detectability, such as the murrelet. 
Unfortunately, processing and identifying target species vocalizations in 
passive acoustic monitoring data have traditionally required manual 
labeling, which can also be costly and time consuming (Rempel et al., 
2019). However, concomitant computational advances have addressed 
many of the difficulties associated with working with acoustic data, 
including software packages available to store, manipulate, and docu
ment large volumes of data (Katz et al., 2016); analytical methods to 
streamline the processing of these data (Phillips et al., 2018); and the 
development of models to classify acoustic detections into species de
tections (Ruff et al., 2020; Ruff et al., 2021; Kahl et al., 2021). Machine 
learning algorithms (a form of artificial intelligence) via convolutional 
neural networks when paired with ARUs represent a potential path 

forward to monitor the occurrence of rare vocalizing species effectively 
and efficiently across broad landscapes (Lesmeister et al., 2021). Our 
objectives were to conduct passive acoustic monitoring surveys and 
develop a convolutional neural network (PNW-Cnet) to semi- 
autonomously identify murrelet “keer” calls (Fig. 1) in large volumes 
of acoustic data (>1 million h and > 400 TB of acoustic data). Second, 
we used murrelet detections to examine spatiotemporal patterns in keer 
calling across two regions in the Pacific Northwest, U.S.A. Finally, we 
discuss proposed next steps for research and the implications of this 
work to inform conservation and management decision making for 
murrelets across forest landscapes. 

2. Materials and methods 

2.1. Study area 

We conducted passive acoustic monitoring surveys in publicly 
owned forests managed by the Federal government in the Oregon Coast 
Range (COA) and Olympic Peninsula (OLY), U.S.A. The passive acoustic 
monitoring program was designed to support northern spotted owl (Strix 
occidentalis caurina) population monitoring (Lesmeister et al., 2021) but 
objectives were expanded to include monitoring the distributional dy
namics of other vocalizing wildlife species across long timespans (Les
meister and Jenkins, 2022). These forests are comprised of forest stands 
that are considered to support among the best remaining murrelet 
nesting habitat in Oregon and Washington (Lorenz et al., 2021). 

2.2. Data collection 

We developed a 5 km2 hexagon tessellation to form a sampling grid 
across study areas (Lesmeister et al., 2021). We randomly selected 120 
sampling hexagons in each study area (approximately 20 % of available 
hexagons) that contained ≥ 50 % forest-capable lands and ≥ 25 % 
federal ownership. Forest-capable lands were lands with soil types, plant 
associations, and elevations capable of developing into forests (Davis 
and Lint, 2005). We also avoided sampling adjacent hexagons to mini
mize the odds of detecting the same individual northern spotted owl in 
multiple hexagons within a single field season (Lesmeister et al., 2021). 
Thus, survey hexagons were restricted from high elevation sites and 
were non-adjacent. 

We used Song Meter 4 ARUs (Wildlife Acoustics, Maynard, MA) to 
conduct the passive acoustic monitoring. These units have a signal-to- 
noise ratio of approximately 80 dB at 1 kHz and were set to record at 
a 32 kHz sampling rate. We programmed ARUs to record during 
crepuscular diel periods from 1 h before sunset to 3 h after sunset and 
from 2 h before sunrise to 2 h after sunrise, producing 8 h of recordings 
per day. Within each sampling hexagon we randomly selected five sur
vey station locations (600 survey stations per study area) that were at 
mid-to-upper slope positions; ≥50 m from roads, trails, and streams to 
reduce vandalism and excessive background noise; spaced ≥ 500 m 

Fig. 1. Image of three “keer” calls, which are made by male and female 
marbled murrelets (Brachyramphus marmoratus). 
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apart; and located ≥ 200 m from the edge of a hexagon. At each survey 
station, we mounted the ARU to a tree with a diameter at breast height of 
15–20 cm to allow the omni-directional microphones to extend past the 
bole for unobstructed recording ability. We deployed ARUs for a six- 
week period during March through August in each of the four years 
(2018–2021), which aligns with the breeding season for murrelets and 
most of the other forest birds (both resident and migrants) in the region. 
However, some ARUs remained deployed into October due to the 
scheduling of field logistics. 

We attempted to monitor the same 240 hexagons (120 per study 
area) in each field season, but the number of hexagons monitored varied 
based on access and logistical limitations (Table 1). We made two 
sampling design changes between the 2018 and 2019 field seasons: 1) 
we reduced the number of survey stations to four (480 survey stations 
per study area) based on Duchac et al. (2020) that found cumulative 
detection probability for northern spotted owls exceeded 95 % with four 
units after six weeks of recording; and 2) we programmed ARUs to 
additionally record for the first 10 min of every hour (increasing total 
recording time to approximately 10 h of recording at each station per 
day) to allow for additional detections of diurnal and nocturnal species. 

2.3. Convolutional neural network 

Murrelet keer calls were detected using two different versions of 
PNW-Cnet, a deep convolutional neural network developed for semi- 
automated data processing and identification of multiple species in the 
passive acoustic recordings (Ruff et al., 2023; Lesmeister and Jenkins, 
2022). The two versions used were version 3 (hereafter “PNW-Cnet v3″) 
and version 4 (”PNW-Cnet v4″), which were similar in structure to 
previous versions (Ruff et al., 2020; Ruff et al., 2021). However, they 
differed in the number of target classes recognized and in the training 
datasets and training procedures used. 

PNW-Cnet was implemented in Python using the TensorFlow soft
ware library (Abadi et al., 2015) via the Keras functional API (Chollet, 
2015; Ruff et al., 2023). Each version of PNW-Cnet consisted of one 
input layer, six convolutional layers, and two fully connected layers. The 
input layer accepted image data in the form of an array of pixel values in 
the range [0, 1]. The first and second convolutional layers each con
tained 32 5 × 5 filters, the third and fourth convolutional layers each 
contained 64 5 × 5 filters, and the fifth and sixth convolutional layers 
each contained 128 5 × 5 filters. All convolutional layers used rectified 
linear unit (“relu”) activation. During training, each convolutional layer 
was followed by 2 × 2 max pooling to reduce the total number of 
trainable parameters and 20 % dropout to minimize overfitting, build 
redundancy, and reduce interdependence between nodes within each 
layer. Output from the sixth convolutional layer was flattened and 
passed to a fully connected layer with 256 nodes, which used relu 

activation. Finally, the output layer was a fully connected layer using 
sigmoid activation, the values of which comprised the output of the 
model (i.e., the class scores). Sigmoid activation produces floating-point 
output in the range [0, 1] and is not normalized over the nodes of the 
output layer. Therefore, the class scores are nominally independent of 
one another, and each score can be treated as a binary classifier for the 
corresponding class. The class scores are loosely interpretable as the 
model’s degree of confidence that a given acoustic segment contains 
sounds matching a given class. The only structural difference between 
PNW-Cnet v3 and v4 was the number of nodes in the output layer, which 
defined the number of target classes recognized by the model. PNW-Cnet 
v3 had 37 output nodes, while PNW-Cnet v4 had 51 output nodes. 

The datasets used to train PNW-Cnet v3 and v4 consisted of spec
trograms representing 12-s recording segments (hereafter clips) of audio 
in the frequency range 0–4000 Hz. Spectrograms were generated as 8-bit 
grayscale Portable Network Graphic (PNG) image files with resolution 
1000 × 257. Spectrograms were generated using SoX (Sound eXchange; 
https://sourceforge.net/projects/sox/) with the following parameters: 
Hann window with window length 2048, 50 % window overlap, and a 
256-point DFT. The temporal and frequency scales were both linear, so 
each pixel in the resulting spectrograms covered 0.012 s of time and 
15.6 Hz of frequency. Training images had a dynamic range of 0–90 
dBFS. Spectrograms could contain signatures of zero or more target 
classes and were weakly labeled (i.e., the labels we provided to PNW- 
Cnet during training indicated which target classes were present in 
each image, but not where the acoustic signatures were located within 
the image). PNW-Cnet v3 was compiled and trained in August 2020 and 
was the first version to include the murrelet keer call as a target class. 
PNW-Cnet v3 was trained on a set of 194,524 images representing 37 
target classes, including 1,363 images containing the murrelet keer call 
class. PNW-Cnet v4 was compiled and trained in May 2021. This version 
of the model was trained on a set of 426,605 images representing 51 
target classes, including 5,757 images containing the murrelet keer call 
class. Training images for the murrelet class were drawn exclusively 
from the COA and OLY study areas. Within the PNW-Cnet v3 training 
dataset, 1,248 (91.6 %) of the images containing the murrelet class were 
from COA and 115 (8.4 %) were from OLY. Within the PNW-Cnet v4 
training dataset, 3,173 (55.1 %) of the images containing the murrelet 
class were from COA and 2,584 (44.9 %) were from OLY. The large 
imbalance between COA and OLY in the PNW-Cnet v3 training dataset 
was not intentional and was due to data availability at the time, but may 
have affected performance of PNW-Cnet v3 in OLY (see results). 

PNW-Cnet v3 and v4 were trained using the Adam optimizer 
(Kingma and Ba, 2014) with an initial learning rate of 0.001. We used 
binary cross-entropy as the loss function. During training, the model 
weights were saved only after epochs in which the validation loss 
decreased to prevent the model from overfitting to the training set. 

Table 1 
Summary of sampling and processing effort and estimated marbled murrelet (Brachyramphus marmoratus) detections in the Oregon Coast Range (COA) and Olympic 
Peninsula (OLY), 2018–2022. Data from 2020 were processed using PNW-Cnet v3 and data from 2018, 2019, 2021 and 2022 were processed using PNW-Cnet v4. 
Detections (naïve) for each year are the number of 12-s clips that PNW-Cnet assigned a score ≥ 0.95 for the murrelet keer call class. Detections (adjusted) are the 
number of 12-s clips that met the score threshold for murrelet keer call, multiplied by the precision of the corresponding version of PNW-Cnet for the murrelet class.  

Study 
area 

Year Hexagons 
sampled 

Survey 
stations 

First recording 
date 

Last recording 
date 

Recording 
time (h) 

Volume 
(TB) 

Processing 
time (h) 

Detections 
(naïve) 

Detections 
(adjusted) 

COA 2018 120 579 07 Mar 17 Sep 197,759  82.9  968.5* 53,259 48,072  
2019 106 413 04 Apr 11 Sep 155,222  32.5  461.8 13,920 11,831  
2020 120 471 03 Mar 20 Jul 186,406  39.1  587.9 7,828 4,908  
2021 120 476 03 Mar 04 Aug 217,292  45.5  530.6 17,633 14,370  
2022 117 466 02 Mar 22 Aug 258,513  54.2  635.6 23,337 19,121 

OLY 2018 88 434 12 Mar 31 Aug 147,649  61.9  561.1 12,420 10,325  
2019 116 456 15 Apr 10 Sep 178,001  37.3  440.3 14,584 11,997  
2020 119 464 16 Apr 03 Oct 218,971  45.9  654.4 18,946 13,263  
2021 119 471 30 Mar 12 Sep 216,309  45.3  420.9 22,039 18,466  
2022 120 476 28 Mar 20 Sep 264,670  55.5  784.3 26,522 22,617 

*Processing time for the 2018 COA data is extrapolated from the 73% of these data that were processed using high-performance computers. The remaining 27% were 
processed using desktop computers, and we did not record total processing time for these data. 
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Additionally, we implemented a learning rate reduction callback, which 
halved the learning rate if the validation loss did not decrease for five 
consecutive epochs, with a cooldown period of five epochs. This was 
intended to allow the model to make finer adjustments as training 
progressed and the model approached an optimal configuration. PNW- 
Cnet v3 was trained for 40 epochs using an 80–20 training–validation 
split, and PNW-Cnet v4 was trained for 50 epochs using a 90–10 train
ing–validation split. 

The ARUs stored data in the form of waveform files with duration of 
either 1 h or 10 min as defined by the recording schedule. We uploaded 
the acoustic data to a central server and processed using high- 
performance computers at the Oregon State University Center for 
Quantitative Life Sciences. We used SoX to generate spectrograms rep
resenting non-overlapping 12-s clips of the acoustic data (i.e., 300 clips 
per hour) in the frequency range 0–4000 Hz, matching the preparation 
of the training data. We used PNW-Cnet v3 to process audio data from 
2020 and used PNW-Cnet v4 to process audio data from 2018, 2019, and 
2021. The data from 2018 to 2019 were initially processed using an 
earlier version of PNW-Cnet that did not identify murrelet keer calls; 
those data were reprocessed with PNW-Cnet v4 for this analysis. We 
considered clips with a score ≥ 0.95 for the murrelet class to be apparent 
detections. We computed precision by comparing the scores assigned to 
clips by each PNW-Cnet version with tags assigned to the same clips by 
trained human reviewers. At a given score threshold, precision is defined 
as the proportion of clips confirmed as containing murrelet keer calls (i. 
e., number of true positives) among clips with a class score meeting or 
exceeding the score threshold (i.e., number of apparent detections). We 
estimated the number of murrelet detections as the number of 12-s clips 
in the audio data to which PNW-Cnet assigned a score exceeding 0.95 for 
the murrelet class, multiplied by the estimated precision of the appro
priate version of PNW-Cnet for the murrelet class in the specific study 
area (Table 2) rounded to the nearest integer. In addition to processing 
data with PNW-Cnet, we used the sound pressure level analysis feature 
in program Kaleidoscope to quantify the mean daily background noise 
levels at each survey station for each sampling week across seven fre
quency bands (250 through 1000 Hz), given background noise levels can 
influence our ability to detect species using ARUs (Appel et al., 2023; 
Weldy et al., 2023). 

2.4. Pnw-cnet performance 

We calculated performance metrics for the murrelet class using two 
different test datasets from our two study areas. The first (2020) test 
dataset was intended to measure the overall performance of PNW-Cnet 
v3. This dataset was drawn from audio collected during the 2020 field 
season and consisted of 12-s clips for which PNW-Cnet v3 had assigned a 
score ≥ 0.95 for any of the 37 target classes. There were 48,876 clips 

that met this threshold for the murrelet class in the 2020 data, of which 
we randomly selected 2,258 clips. All clips in this dataset were reviewed 
manually by human reviewers and were tagged according to whether 
they contained any of the target classes for PNW-Cnet v3. We also used 
the 2020 test dataset to assess overall performance for PNW-Cnet v4 
after first removing any clips that had been included in the training 
dataset for PNW-Cnet v4. 

The second (2022) test dataset was intended to measure PNW-Cnet 
v4′s performance on the murrelet class specifically. We identified 12-s 
clips from the 2022 field season for which the class score assigned by 
PNW-Cnet v4 for the murrelet class was ≥ 0.50. There were 96,139 clips 
that met this threshold in the 2022 data, of which we randomly selected 
7,193 clips to review manually, tagging the murrelet class as well as any 
other species or call types that were present and identifiable. 

2.5. Spatiotemporal patterns in detection data 

We used a hurdle model to quantify variation in murrelet detections, 
while also quantifying variation in the number of murrelet detections 
conditional on the survey station having at least one detection. Hurdle 
models are similar to widely used zero-inflated regression models except 
hurdle models completely separate zeros from the count process (Mul
lahy, 1986; Johnson et al., 2005). This approach fits two regression 
models to the count data simultaneously: a logistic regression model to 
model the detection/non-detection of the species to estimate habitat use, 
and a count-based zero-truncated regression model (e.g., Poisson, 
negative binomial) to model variation in the number of detections when 
the habitat is being used (i.e., the species was detected). We summed the 
number of keer call detections estimated for each sampling week and 
used a negative binomial distribution for the count process because the 
count data were overdispersed relative to a Poisson distribution. We 
incorporated covariates in both regression models to capture variability 
in factors we hypothesized would affect detections: covariates that were 
an artifact of our sampling were treated as fixed effects and other sources 
of variability not captured by these factors were treated as random ef
fects. We modeled the detection/non-detection process as an additive 
function of study area and included year, hexagon, and station within 
hexagon random effects. Notably, this model describes the probability of 
absence rather than the probability of use that is generally more com
mon in the ecological literature (Brooks et al., 2017). We modeled the 
count process as an additive function of study area, weekly average 
background noise, total survey effort (i.e., recording hours), and survey 
week, and again included year, hexagon, and station within hexagon 
random effects. 

We then conducted a secondary analysis at the hexagon scale 
(combining detections from stations within a hexagon) to examine 
spatiotemporal variation in keer call patterns in relation to late- 

Table 2 
Performance metrics calculated for PNW-Cnet v3 and v4 based on the 2020 test dataset from the Oregon Coast Range (COA) and Olympic Peninsula (OLY), U.S.A. 
PNW-Cnet v3 was tested on 101,403 12-s clips for which PNW-Cnet v3 had assigned a score ≥ 0.95 for any of the 37 target classes. PNW-Cnet v4 was tested on the same 
test dataset after removing clips that were included in its training dataset. Clips = total clips from each study area. Detections (naïve) are the number of 12-s clips that 
PNW-Cnet assigned a score ≥ 0.95 for the marbled murrelet (Brachyramphus marmoratus) keer call class. Positive Examples = total clips actually containing murrelet 
keer calls. TP = total clips that were true positives (i.e., clips that scored ≥ 0.95 for the murrelet class and contained murrelet calls). FP = total clips that were false 
positives (i.e., clips that scored ≥ 0.95 for the murrelet class and did not contain murrelet calls). TN = total clips that were true negatives (i.e., clips that scored < 0.95 
for the murrelet class and did not contain murrelet calls). FN = total clips that were false negatives (i.e., clips that scored < 0.95 for the murrelet class and contained 
murrelet calls). Precision = TP / Detections (naïve). Recall = TP / Positive examples.  

Model version Study area Clips Detections (naïve) Positive examples TP FP TN FN Precision Recall 

PNW-Cnet v3            
COA 69,841 1,432 1,457 1,373 59 68,325 84  0.959  0.942  
OLY 31,562 826 672 661 165 30,725 11  0.800  0.984  
Overall 101,403 2,258 2,129 2,034 224 99,050 98  0.901  0.955 

PNW-Cnet v4            
COA 60,369 1,245 1,380 1,232 13 58,976 148  0.990  0.893  
OLY 27,973 549 561 543 6 27,406 18  0.989  0.968  
Overall 88,342 1,794 1,941 1,775 19 86,382 166  0.989  0.914  
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successional (mature) forest availability and distance to ocean. We used 
the Old Growth Structure Index 80 (OGSI 80) for each year to quantify 
the amount of late-successional forest within each hexagon. The OGSI is 
a 30 × 30 m resolution raster layer based on imputation of forest in
ventory and analysis (FIA) plot data onto Landsat imagery (Davis et al., 
2022). The index is calculated using measures of old-growth structural 
elements such as density and diversity of large live trees, density of large 
snags, and percentage cover of down woody material. The OGSI 80 is 
derived from OGSI to describe the point (approximately 80 years) at 
which forests generally start to develop stand structures that represent 
late-successional forests in the Pacific Northwest. The OGSI 80 is a bi
nary layer, where cells with a value of one are considered late- 
successional forest pixels and cells with a value of zero are not. We 
calculated the mean value of all pixels within each hexagon to estimate 
the proportion/amount of late-successional forest. We estimated dis
tance to ocean as the minimum distance between the centroid of each 
hexagon and the Pacific Ocean and Salish Sea. We summed the number 
of keer call detections estimated for each sampling week for each 
hexagon and fit a negative binomial mixed model to these data. We 
modeled the count process as an additive function of OGSI 80, distance 
to ocean, study area, weekly average background noise, total survey 
effort (i.e., recording hours), survey week, and year, and included a 
hexagon-level random effect. We then used this model to predict keer 
call numbers across both study areas in all years to visually depict the 
intensity of habitat use across these landscapes. 

We restricted both analyses to data collected from April through 
August to align with the period when murrelets typically nest and, by 
extension, undertake inland flights (Evans Mack et al., 2003). These 
models were fit in program R (R Core Team, 2020) using the glmmTMB 
package (Brooks et al., 2017). All random effects were assumed to be 
normally distributed with a mean of zero, and we standardized all 
continuous covariates to have a mean of zero and standard deviation of 
one prior to model fitting. 

3. Results 

Our annual sampling effort on each study area ranged from 106 to 
120 hexagons (413–579 survey stations) in COA and 88–120 hexagons 
(434–476 survey stations) in OLY. We used PNW-Cnet v3 to process 
405,377 h of audio (ca. 84.9 TB) from 935 survey stations across 239 
unique hexagons in 2020, and we used PNW-Cnet v4 to process 
1,112,232 h of audio (ca. 305.4 TB) recorded from 2,829 survey stations 
in 2018, 2019 and 2021 across 239 unique hexagons. We processed 
approximately 300–400 h of audio data per hour of processing time for a 
total of approximately 4,625 h of processing time, which is the equiv
alent to roughly six months of continuous processing over the four years 
of the study (Table 1). 

The 2020 test dataset contained a total of 101,403 12-s clips. This 
included 2,258 clips for which PNW-Cnet v3 assigned a score ≥ 0.95 for 
the murrelet keer call class. Of the 2,258 apparent detections, manual 
review confirmed that 2,034 clips contained actual murrelet keer calls, 
giving an overall precision of 0.901 for PNW-Cnet v3 on the murrelet 
class (Table 2). When we ran PNW-Cnet v4 on the same test dataset, 
minus clips that had been included in the training dataset for PNW-Cnet 
v4 (n = 88,342 clips), there were 1,794 apparent murrelet detections, of 
which 1,775 were confirmed to contain murrelet keer calls, giving an 
overall precision of 0.989 for PNW-Cnet v4 on the murrelet class 
(Table 2). 

Model precision varied by study area and threshold (Table 2). Using 
a threshold of ≥ 0.95, the 2020 test dataset contained 826 apparent 
murrelet detections from OLY, of which 661 were true positives (i.e., 
precision for OLY was 0.800). The 2020 test dataset contained 1,432 
apparent murrelet detections from COA, of which 1,373 were true 
positives (i.e., precision for COA was 0.959). Clips in the 2020 test 
dataset that yielded false positives for the murrelet class often included 
olive-sided flycatcher (Contopus cooperi), nuthatch (Sitta spp.), hermit 

thrush (Catharus guttatus), varied thrush (Ixoreus naevius), and “scream” 
calls from various raptors (Accipitridae). 

Of the 7,193 clips in the 2022 test dataset, which all had class scores 
≥ 0.50 for the murrelet keer call class, manual review confirmed that 
5,665 clips actually contained murrelet keer calls. Hence, for the keer 
call class, overall precision was 0.788 at a score threshold of 0.50. 
Precision increased with increasing score threshold to a maximum of 
0.979 at a score threshold of 0.99. Conversely, recall decreased with 
increasing score threshold. All 5,665 instances of keer calls in the 2022 
test dataset were detected at a score threshold of 0.50, while 2,769 of 
these clips (48.9 %) were detected at a score threshold of 0.99. Detailed 
results for PNW-Cnet v4 on the 2022 test dataset are shown in Table 3. 

The months in which ARUs were operational varied by year but 
spanned March through October. We used a 0.95 threshold and 
accounted for precision of PNW-Cnet for each study area and year for all 
subsequent findings. Although we had substantially fewer recording 
hours in September and October, as expected, we did not detect murrelet 
keer calls during these months (Fig. 2). We did, however, detect 
murrelet keer calls in March, albeit in lower numbers. Most of our call 
detections occurred from approximately July 9th to August 12th. 

Results from our hurdle model indicate that murrelet habitat use did 
not differ based on study area (Table 4). Most of the unaccounted for 
variability (86.02 %) in habitat use was attributed to differences among 
hexagons, followed by stations within hexagons (12.33 %), and years 
(1.65 %). As expected, we found the number of call detections increased 
later in the season and with more recording hours but decreased as 
background noise increased (albeit the effect of background noise was 
not significant). When murrelets were present, we found there were 
significantly more calls in the COA study area compared to the OLY 
study area. Most of the unaccounted for variability (61.10 %) in call 
detection counts was attributed to differences among hexagons, fol
lowed by stations within hexagons (30.33 %), and years (8.56 %). 

We had similar results when analyzing the data at the hexagon scale 
(Table 5). The number of detections increased with survey effort, 
decreased with increasing background noise, and was lower in the OLY 
study area. Although this analysis indicated call detection decreased 
later in the season, the effect size was relatively small and not statisti
cally significant. Call detections were higher in 2018 when compared to 
the other sample years. Importantly and consistent with previous studies 
(e.g., Betts et al., 2020; Valente et al., 2023), we found call detections 
increased with increasing late-successional forest and decreased as the 
distance to ocean increased (Fig. 3). 

4. Discussion 

We used data collected as part of a broader-scale passive acoustic 
monitoring program to conduct the first call phenology study for mur
relets across two large regions in the Pacific Northwest, U.S.A. In doing 
so, we develop, apply, and evaluate a convolutional neural network 
(PNW-Cnet) that we used to accurately identify murrelet keer calls while 
processing large volumes of acoustic data in a relatively short time
frame. Overall, we found that PNW-Cnet provided a streamlined 
approach to find murrelet keer calls in our acoustic data. Our explor
atory analysis of murrelet keer call patterns represents a shift in what is 
possible when quantifying murrelet distributional dynamics in forest 
habitats. Indeed, we demonstrated that passive acoustic monitoring is 
not limited to simply detection/non-detection data, and we can begin to 
understand intensity of use across broad scales for rare and/or cryptic 
species that vocalize. Coupling passive acoustic monitoring and machine 
learning models provides a powerful approach for new murrelet 
research and will undoubtedly open opportunities for broadscale inland 
monitoring of murrelet populations to inform natural resource man
agement decisions. 

There are numerous advantages to our semi-autonomous approach 
when compared to other currently implemented murrelet inland moni
toring approaches, such as audio-visual surveys or nest searching. 
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Foremost, collecting passive acoustic data is far less intrusive to the 
species than nest searching that involves catching, transmitter tagging, 
and tracking individual birds (Baker et al., 2006; Barbaree et al., 2014; 
Wilk et al., 2016). Secondly, our monitoring approach is also far less 
labor intensive than nest searching via telemetry, traditional ground- 
based nest searches (Baker et al., 2006; Hamer et al., 2021), and the 
audio-visual surveys protocols typically used (Evans Mack et al., 2003). 
Although comparative costs are difficult to quantify precisely, passive 
acoustic monitoring allows biologists to sample broader spatial areas at 
finer-temporal resolutions (i.e., across all times of the diel cycle) without 
a substantial increase in effort. Third, because ARUs can record 
continuously for vocalizations, our acoustic approach is likely to 
improve detectability compared to human-based audio-visual surveys 
which typically last only a couple of hours (e.g., Evans Mack et al., 
2003). Fourth, because the acoustic recordings can be stored indefi
nitely, these data can be double-checked or revisited to answer addi
tional questions regarding distributions of other vocalizing species, 

phenology of murrelet call activity, or inter-specific effects on species 
distributions. Fifth, because longitudinal data on inland murrelet habitat 
use do not currently exist, establishment of permanent recording sta
tions could help elucidate the relative role of local habitat characteris
tics, site fidelity, and climactic and at-sea conditions in driving changes 
in breeding distributions through time (Betts et al., 2020). Finally, with 
relatively small additions, sound broadcast functionality could be 
incorporated into the recording systems to investigate how environ
mental factors interact with social cues to shape murrelet distribution 
patterns (Valente et al., 2021). 

Conversely, our automated approach to recording murrelet vocali
zations does have a downside, in that it precludes visual observations. 
Traditional surveys rely on human-based observations of inland mur
relets to document behaviors including overhead circling, sub-canopy 
flights, and landings in nest trees, which are assumed to be more reli
able indicators of nesting activity than simple aural detections (Evans 
Mack et al., 2003). Preliminary evidence suggests that patterns in 

Table 3 
Precision (Prec.) versus score threshold for PNW-Cnet v4 based on the 2022 test dataset from the Oregon Coast Range (COA) and Olympic Peninsula (OLY), U.S.A. The 
dataset consisted of 7,193 12-s clips to which PNW-Cnet v4 assigned a score ≥ 0.50 for the marbled murrelet (Brachyramphus marmoratus) keer call class, randomly 
sampled from all clips (n = 96,139) that met this criterion in the data collected in 2022. Det. (naïve) = total clips in the test dataset that met the score threshold. Det. 
(true) = total clips that met the score threshold and were confirmed to contain murrelet keer calls. Precision = True Positives / Det (naïve).   

Threshold = 0.50  Threshold = 0.75 Threshold = 0.90 Threshold = 0.95 Threshold = 0.99 
Study 
area 

Det. 
(naïve) 

Det. 
(true) 

Prec.  Det. 
(naïve) 

Det. 
(true) 

Prec. Det. 
(naïve) 

Det. 
(true) 

Prec. Det. 
(naïve) 

Det. 
(true) 

Prec. Det. 
(naïve) 

Det. 
(true) 

Prec. 

COA 3,251 2,679  0.824  2,576 2,310  0.897 2,082 1,961  0.942 1,802 1,731  0.961 1,263 1,245  0.986 
OLY 3,942 2,986  0.757  2,977 2,580  0.867 2,419 2,210  0.914 2,093 1,972  0.942 1,506 1,466  0.973 
Overall 7,193 5,665  0.788  5,553 4,890  0.881 4,501 4,171  0.927 3,895 3,703  0.951 2,769 2,711  0.979  

Fig. 2. Depiction of relative keer call detections (boxplots) and survey effort (recording hours: lines) for marbled murrelet (Brachyramphus marmoratus) in the Oregon 
Coast Range (COA) and Olympic Peninsula (OLY), U.S.A, 2018–2021. Relative keer call detections were estimated as the product of the number of keer calls detected 
for each hexagon and the processing model-specific precision divided by the hexagon specific recording effort. Note that variation in survey effort is related to field 
logistics and schedule, recording schedules, and equipment functionality (see Methods). 
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vocalizations could help distinguish areas of prospecting activity from 
those where indications of nesting activity have been confirmed (Adam 
Duarte, unpublished data), although further research is required. Yet 
regardless of whether breeding can be confirmed via audio recordings, 
passive acoustic monitoring can readily be applied to help managers 
identify potential nest sites, and thus prioritize areas that may require 
further investigation using more traditional survey methods (i.e., 
adaptive cluster sampling). 

Overall, we found that both versions of the PNW-Cnet model (v3 and 
v4) were effective at detecting murrelet keer calls with relatively high 
precision in our study areas. Because the two versions of PNW-Cnet were 
structurally similar and because most clips used to train PNW-Cnet v3 
were subsequently also used to train PNW-Cnet v4, we expected the two 
versions to behave similarly on classes that were included in both ver
sions. The performance of PNW-Cnet v3 was less evenly distributed 
between study areas while PNW-Cnet v4 was more consistent. This may 
be attributable to the more balanced training dataset used for PNW-Cnet 
v4 and/or to the addition of new target classes for sounds that previously 
produced false positives for murrelets and that were not distributed 
evenly between different study areas. Measures of precision depend on 
the composition of the datasets on which they are based, and these 
measures can be difficult to generalize to real-world use. The relative 
abundance of positive examples (e.g., real murrelet calls) versus sounds 
likely to produce false positive detections has a strong influence on 
measured precision, but the array of sounds likely to produce false 
positives for a given class is difficult to characterize in advance. Once 

identified, sources of false positives can be included as target classes in 
future versions of the model, allowing error rates to be reduced itera
tively over time. The much lower incidence of false positive murrelet 
detections from PNW-Cnet v4 indicates that we succeeded in correcting 
at least some of the errors commonly made by PNW-Cnet v3. The 
apparent strong increase in precision of PNW-Cnet v4 over PNW-Cnet v3 
based on the 2020 test dataset is also likely an artifact of how this test 
dataset was constructed. The 2020 test dataset consisted of clips that 
produced high-confidence detections of the PNW-Cnet v3 target classes, 
including murrelet keer calls. Hence, these clips had effectively been 
pre-screened by PNW-Cnet v3 before being processed using PNW-Cnet 
v4. The measured precision of PNW-Cnet v4 on the 2022 test dataset 
is likely more reflective of real-world performance, as these clips were 
randomly sampled from apparent murrelet detections in the 2022 data. 
PNW-Cnet will continue to be updated as more data become available, 
and we suggest that the latest version of PNW-Cnet be used by those 
interested in semi-automating murrelet detections. 

The performance of PNW-Cnet v4 on the 2022 test dataset at varying 
thresholds illustrates the essential tradeoff between precision and recall 
as a function of score threshold. Setting a higher score threshold inevi
tably results in higher precision (i.e., fewer false positives) at the cost of 
lower recall (i.e., more false negatives or missed detections). The rela
tive importance of precision and recall depends on project goals. For rare 
and/or elusive species, a low threshold can help to maximize species 
detectability and allow for the quantification of finer resolution call 
phenology studies (i.e., call patterns within a day). However, this may 
also necessitate considerable review to identify and omit false positive 
detections. Conversely, a high threshold can virtually eliminate false 
positive detections. This would allow for easy quantification of activity 
levels and comparisons across sites or years, but only if the target species 
vocalizes frequently enough and/or sampling effort is high enough that 
the lowered detectability is not an issue. 

Our analysis of murrelet keer call patterns allowed us to decompose 
variability in these data related to our sampling design and to examine 
broad-scale ecological factors driving spatiotemporal distributions. The 
relationships uncovered between the number of call detections and 
background noise and survey effort are most certainly related to the 
detectability of the call within the audio data and not related to the 
ecology of the species. However, the effect of ordinal week on the 
number of call detections at survey stations is likely related to the 
breeding behavior of the species, where murrelets increase their pro
pensity to undertake inland flights as they switch from finding suitable 
nesting habitat (i.e., prospecting) to incubating eggs to feeding young. 
Why the effect of ordinal week decreased as the scale of the analysis 
increased is unclear and warrants further investigation. Our multi-scale 
sampling design (i.e., stations within hexagon) allowed for the 

Table 4 
Parameter estimates from a mixed effects negative binomial hurdle model used to quantify variation in detected marbled murrelet (Brachyramphus marmoratus) keer 
calls at survey stations in the Oregon Coast Range (COA) and Olympic Peninsula (OLY), U.S.A., 2018–2021.  

Model Parameter Mean SE Z p-value Variance SD 

Zero-inflation         
Intercept  1.015  0.215  4.731  <0.001    
Study area: OLY  0.268  0.244  1.098  0.272    
RE: Year      0.063  0.252  
RE: Hexagon      3.297  1.816  
RE: Station within hexagon      0.473  0.688 

Count         
Intercept  0.794  0.049  16.079  <0.001    
Background noise  − 0.007  0.012  − 0.619  0.536    
Julian week  0.114  0.012  9.615  <0.001    
Study area: OLY  − 0.010  0.029  − 2.583  0.010    
Survey effort  0.064  0.013  5.042  <0.001    
RE: Year      0.007  0.082  
RE: Hexagon      0.048  0.219  
RE: Station within hexagon      0.024  0.154  
Dispersion  22.6       

Table 5 
Parameter estimates from a mixed effects negative binomial model used to 
quantify variation in detected marbled murrelet (Brachyramphus marmoratus) 
keer calls at the hexagon scale in the Oregon Coast Range (COA) and Olympic 
Peninsula (OLY), U.S.A., 2018–2021.  

Parameter Mean SE Z p-value Variance SD 

Intercept  0.869  0.110  7.906  <0.001   
Background 

noise  
− 0.137  0.021  − 6.395  <0.001   

Distance to 
ocean  

− 1.001  0.077  − 13.063  <0.001   

Julian week  − 0.014  0.023  − 0.620  0.535   
OGSI 80  0.549  0.077  7.102  <0.001   
Study area: OLY  − 0.282  0.151  − 1.875  0.061   
Survey effort  0.576  0.021  27.472  <0.001   
Year: 2019  − 0.268  0.049  − 5.535  <0.001   
Year: 2020  − 0.669  0.049  − 13.792  <0.001   
Year: 2021  − 0.244  0.052  − 4.724  <0.001   
RE: Hexagon      1.146  1.071 
Dispersion  1.07       
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estimation of habitat use at multiple spatial scales. Still, a sample unit 
should represent a distinct unit that has relative homogeneity to accu
rately measure the response and covariates to be considered during 
analyses (Duarte and Peterson, 2021). The greater variability in call 
detections at a survey station among hexagons (relative to within 
hexagons) indicates that this scale is appropriate when modeling 
murrelet distribution dynamics across landscapes, which is similar to 
current northern spotted owl monitoring efforts (Appel et al., 2023; 
Weldy et al., 2023) and why we opted to subsequently analyze the data 
at the hexagon scale. Although the variability in call detections at survey 
stations attributed to year was relatively low, both analyses did find call 
detections varied by year. Some of this variability might be associated 
with the version of PNW-Cnet used each year; however, it is also 
reasonable to assume some of this variability is related to variation in 
nest habitat use and overall investment in nesting across years. Call 
detections increased with increasing late-successional forest and were 
higher in hexagons closer to foraging habitat (i.e., the Pacific Ocean and 
Salish Sea), suggesting our approach documents patterns that are in 
general agreement with the known breeding ecology of the species 
(Betts et al., 2020). However, the degree to which these patterns in keer 
call detections reflect murrelet prospecting vs. nesting activity requires 
further investigation. 

The detection of keer calls is not currently considered an indication 
of murrelet nesting status, so call detections do not currently afford any 
protection status for the forest habitats they occur within nor sanction 
forest management practices to occur in stands that lack auditory de
tections. However, most murrelet detections using audio-visual surveys 
are auditory, and the recently released murrelet audio-visual survey 
protocol revision includes a survey option that only considers call 
detection information (Pacific Seabird Group, 2024). Therefore, call 
detections using ARUs, when paired with PNW-Cnet, may see near-term 
use for murrelet regulatory monitoring efforts across the region. Thus, it 
would be worthwhile to formally estimate detection probabilities of 
murrelets when using ARUs and PNW-Cnet across a range of conditions 
to quantify and compare the survey effort necessary to infer murrelet 
absence under different levels of certainty. 

By integrating technological advances and computational advances, 
we were able to explore high-resolution patterns in call detections for a 
rare and highly cryptic seabird in remote forest habitats at a broad scale. 
This study represents the first broad-scale call phenology study for 
murrelets and the first in-depth exploration of the capabilities PNW-Cnet 
provides for murrelet monitoring. Importantly, PNW-Cnet is publicly 
available and can be used by managers as a tool to process large volumes 
of their own acoustic data in near real-time (Ruff et al., 2023), which 
lowers the barrier to adopting a passive survey approach to monitor 
murrelet populations. Collectively, this study highlights the potential 
use of passive acoustic monitoring in the next chapter of murrelet 
research and monitoring to inform conservation and management de
cisions for this rare and cryptic species across forest landscapes. 
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Fig. 3. Mean predicted keer call counts for marbled murrelet (Brachyramphus marmoratus) in the Oregon Coast Range (COA) and Olympic Peninsula (OLY), U.S.A, 
2018–2021. Predictions were made using the results from the hexagon scale analysis while assuming the mean value for weekly average background noise, total 
survey effort (i.e., recording hours), and survey week. 
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